期刊文献+

嵌任意半群入2-双单半带 被引量:3

Embedding Semigroups into 2-bisimple Semibands
下载PDF
导出
摘要 称半群S为2-半带,若其中每个元素都可以写为S中两个幂等元的积.证明了任意半群可嵌入一个2-双单半带. A semigroup S is called 2-semiband, if every element of S is a product of two idempotents of S. In this paper, it is proved that any semigroup can be embedded into a 2-bisimple semiband.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第1期22-24,共3页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(10471112)资助项目
关键词 嵌入 半带 双单半带 2-双单半带 Embedding Semiband Bisimple semiband 2-bisimple semiband
  • 相关文献

参考文献8

  • 1Howie J M. The subsemigroup generated by the idempotents of a full transformation semigroup[ J ]. J London Math Soc, 1966,41 : 707-716.
  • 2Pastijn F. Embedding semigroups in semibands[ J ]. Semigroup Forum, 1977,14:247-163.
  • 3Byleen K. Regular four-spiral semigroups, idempotent-generated semigroups and the Rees construction [ J ]. Semigroup Forum, 1981,22:97-100.
  • 4Giraldes E, Howie J M. Embedding finite semigroups in finite semibands of minimal depth[J]. Semigroup Forum,1984,28:135-142.
  • 5Howie J M. Fundamentals of Semigroup Theory [ M ]. Oxford: Clarendon Press, 1995.
  • 6Preston G B. Embedding any semigroup in a -simple semigroup[ J ]. Trans Amer Math Soc, 1959,93:557-576.
  • 7徐芒,喻秉钧.关于弱逆半群上最大幂等元分离同余和群同余的注记[J].四川师范大学学报(自然科学版),2002,25(2):137-138. 被引量:5
  • 8徐芒,喻秉钧.逆半群在给定群上的E-囿盖[J].四川师范大学学报(自然科学版),2001,24(2):124-127. 被引量:3

二级参考文献6

  • 1McAlister D B.Groups, semilattices and inverse semigroups[].Transactions of the American Mathematical Society.1974
  • 2McAlister D B.Groups, semilattices and inverse semigroups[].Transactions of the American Mathematical Society.1974
  • 3Howie J M.Fundamentals of Semigroup Theory (2nd)[]..1995
  • 4Petrich M.Inverse Semigroups[]..1984
  • 5McAlister D B,Reilly N R.E-unitary covers for inverse semigroups[].Pacific Journal of Mathematics.1977
  • 6喻秉钧,余时伟,廖群英.弱逆半群上最大幂等元分离同余和群同余[J].四川师范大学学报(自然科学版),2001,24(3):219-223. 被引量:8

共引文献6

同被引文献21

  • 1罗敏霞,何华灿,马盈仓.一类具有恰当断面的左恰当半群[J].西南师范大学学报(自然科学版),2005,30(3):373-376. 被引量:3
  • 2李映辉,王守峰,张荣华.含正则*-断面的正则半群(英文)[J].西南师范大学学报(自然科学版),2006,31(5):52-56. 被引量:10
  • 3李艳,喻秉钧,张润石,郭茜.幺半群S=〈a,b,c|abc=1〉的结构[J].四川师范大学学报(自然科学版),2006,29(5):516-520. 被引量:1
  • 4张润石,李艳,喻秉钧.完全0-单半群的同态像和某些同余[J].四川师范大学学报(自然科学版),2007,30(2):146-150. 被引量:5
  • 5Howie, J. M. Fundamentals of Semigroup of Theory [ M ]. New York: Oxford University Press, 1995.
  • 6Catarina. P. M.. Monids of orientation-preserving transformations of a finite chain and preser~tations[ J]. Semigroups and Applications, 1998:39-46.
  • 7Catarina. P. M and P. M. Higgings. The monoid of orientation-preserving mapping on a chain [ J ]. Semigroup Forum, 1999,58 (2) : 190-206.
  • 8Taijie You, Xiuliang Yang. A classification of the maximal idempotent generated subsemigroups of finite singular transformation semigroups [ J ]. Semigroup Forum, 2002 , 64(2): 236 - 242.
  • 9Taijie You. Maximal regular subsemigroups of certain semigroups of transformations [ J ]. Semigroup Forum, 2002,64 (3) : 391-396.
  • 10Huisheng Pei. Regularity and Green' s relations for semigroups of transformations that preserve an equivalence[ J ]. Commuineations in Algebra , 2005,33 ( 1 ) : 109-118.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部