期刊文献+

一类质量泛函稳定流的不存在性定理

The Noexistence of Stable Current for a Class of Quality Functional
下载PDF
导出
摘要 主要研究欧氏空间中n维紧致子流形M上的一类质量泛函稳定流,证明了当M的截面曲率kM及其平均曲率向量长度‖H‖满足以下条件之一时,M上不存在稳定流:(1)kM>n82,(2)M是14-pinch子流形,‖H‖<;并部分地解决了L-S猜想. This paper studies the stable currents of a class of quality functional in a compact n-dimensional submanifold of Euclidean space. It is proved that there does not exist stable currents in M when its sectional curvature KM and the length of mean curvature ‖H‖ satisfy one of the following condtions : ( 1 ) KM〉n^2‖H‖^2/8(n-1) ; (2) M is a 1/4-pinched submanifold with ‖H‖〈√2(n-1)/n .We partialy answer the L-S conjecture.
作者 李建 张具明
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第1期80-82,共3页 Journal of Sichuan Normal University(Natural Science)
关键词 稳定流 截面曲率 Ric曲率 平均曲率向量 Stable current Sectional curvature Ric curvature Mean curvature vector
  • 相关文献

参考文献4

  • 1Lawson H B, Simons J. On stable currents and their applications to global problems in real and complex geometry [ J ]. Ann of Math, 1973,98 (3) :427-450.
  • 2Aminov J. On the instability of a minimal surface in an n-dimensioual Riemannian[ J]. Space of positive curvature, Math USSR Sbornik, 1976,29 ( 3 ) :359-375.
  • 3Howard R. The nonexistence of stable submanifolds, varifolds, and harmonic maps in sufficiently pinched simply connected Riemannian manifolds[ J ]. Michigan Math J, 1985,32(2) :321-334.
  • 4Shen Yi-bing, He Qun. On stable currents and positively curved hypersurfaces[J]. Proc Amer Math Soc,2001,129(1) :237-246.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部