摘要
主要研究欧氏空间中n维紧致子流形M上的一类质量泛函稳定流,证明了当M的截面曲率kM及其平均曲率向量长度‖H‖满足以下条件之一时,M上不存在稳定流:(1)kM>n82,(2)M是14-pinch子流形,‖H‖<;并部分地解决了L-S猜想.
This paper studies the stable currents of a class of quality functional in a compact n-dimensional submanifold of Euclidean space. It is proved that there does not exist stable currents in M when its sectional curvature KM and the length of mean curvature ‖H‖ satisfy one of the following condtions : ( 1 ) KM〉n^2‖H‖^2/8(n-1) ; (2) M is a 1/4-pinched submanifold with ‖H‖〈√2(n-1)/n .We partialy answer the L-S conjecture.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第1期80-82,共3页
Journal of Sichuan Normal University(Natural Science)
关键词
稳定流
截面曲率
Ric曲率
平均曲率向量
Stable current
Sectional curvature
Ric curvature
Mean curvature vector