期刊文献+

基于微粒群优化算法和支持向量机的软测量建模 被引量:4

Soft Sensor Modeling Based on Particle Swarm Optimization Algorithm and Support Vector Machine
下载PDF
导出
摘要 在分析基本微粒群优化算法(PSO)和支持向量机(SVM)原理的基础上,采用带有末位淘汰机制的微粒群优化算法优化支持向量机的参数,建立了延迟焦化装置粗汽油干点软测量的微粒群支持向量机模型。该方法利用支持向量机结构风险最小化原则和PSO算法快速全局优化的特点,用于软测量建模。仿真实验表明:所建模型的泛化性能较好,模型具有较高的精度。 On the basis of analyzing the particle swarm optimization (PSO) algorithm and support vector machine (SVM), this paper applies the PSO algorithm with last out mechanism to optimize the parameters of SVM. Then, the PSO-SVM model about a practical soft-sensor of gasoline endpoint of delayed coking plant is constructed. The method takes advantages of the minimum structure risk of SVM and the quickly globally optimizing ability of PSO for soft sensor modeling. The simulation results show that the model has effective generalization performance and higher precision.
出处 《华东理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第1期131-134,共4页 Journal of East China University of Science and Technology
关键词 微粒群优化算法 支持向量机 核函数 软测量 particle swarm optimization algorithm support vector machine kernel function soft sensor
  • 相关文献

参考文献7

  • 1Kennedy J, Eberhart R C. Particleswarm optimization [A]. Proceedings of IEEE International Conference on Neural Net works [C]. Australia.. IEEE Service Center, 1995. 1942-1948.
  • 2Parsopoulos K E, Varhatis M N. Particle swarm optimization method in multiobjective problem[A]. Proc ACM Syrup on Applied Computing[C]. Madrid, Spain: ACM Press, 2002. 603-607.
  • 3Frans van den Bergh, Engelbrecht A P. Training product unit networks using cooperative particle swarm optimizers [A]. Proc of the Third Genetic and Evolutionary Computation Conference (GECCO)[C]. San Francisco, USA: Morgan Kaufmann Publishers, 2001. 126-131.
  • 4Carlos A, Coello Coello. Use of particle swarm optimization to design combinational logic circuits [J]. Lecture Notes in Computer 2003, 2606:398 409.
  • 5Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995. 36-43.
  • 6Suykens J A K, Vandewalle J. Least square support vector machine classifiers [J]. Neural Processing Letters, 1999, 9 (3):293-300.
  • 7Suykens J A K. Nonlinear modeling and support vector machine[A]. IEEE Instrumentation and Measurement Technology Conference [C]. Budapest, Hungary: IEEE Press, 2001. 287-294.

同被引文献27

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部