期刊文献+

Preparation of High Performance Grccn Alumina Ceramic Balls by Roller Production Waste

Preparation of High Performance Grccn Alumina Ceramic Balls by Roller Production Waste
下载PDF
导出
摘要 To reuse roller waste as a raw material of high performance green ceramic balls, three kinds of white alumina ceramic balls whose wear resistance were 2-3 times of the best high alumina ceramic ball with 90% Al2O3 were prepared, and the Al2O3 content of the prepared balls was 75%. It is found that the effect of calcia and magnesia on the wear resistance of ceramic balls is contrast to the accepted one: the wear rate of the ceramic balls prepared in CaO-Al2O3-SiO2 system is the lowest and the wear rate of the ceramic balls prepared in MgO-Al2O3-SiO2 is the highest. The main crystal phase of the ceramic ball is mullite and corundum. The ceramic ball granular is uniform and fine with 4-5 μm average size. The pore diameter is about 2 μm. The wear way of the ceramic balls is mainly transcrystalline fracture. To reuse roller waste as a raw material of high performance green ceramic balls, three kinds of white alumina ceramic balls whose wear resistance were 2-3 times of the best high alumina ceramic ball with 90% Al2O3 were prepared, and the Al2O3 content of the prepared balls was 75%. It is found that the effect of calcia and magnesia on the wear resistance of ceramic balls is contrast to the accepted one: the wear rate of the ceramic balls prepared in CaO-Al2O3-SiO2 system is the lowest and the wear rate of the ceramic balls prepared in MgO-Al2O3-SiO2 is the highest. The main crystal phase of the ceramic ball is mullite and corundum. The ceramic ball granular is uniform and fine with 4-5 μm average size. The pore diameter is about 2 μm. The wear way of the ceramic balls is mainly transcrystalline fracture.
出处 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第1期134-138,共5页 武汉理工大学学报(材料科学英文版)
基金 the National Natural Science Fundation of China(No.50272016),Guangxi 2003 Degree Authorzation Office academic Construction Fun,and Natural Science Fund of Guangxi Education Department(No.[2004]4)
关键词 roller production waste alumina ceramic ball wear resistance WHITE transcrystalline fracture roller production waste alumina ceramic ball wear resistance white transcrystalline fracture
  • 相关文献

参考文献3

二级参考文献28

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部