摘要
共轭梯度法是解决无约束非线性最优化问题的重要的方法之一.基于FR方法好的收敛性并考虑到dk的下降性,提出了一类新的共轭梯度法,并在两种Armijo型搜索下,研究了新方法的全局收敛性.数据实验表明新方法是有效的.
Conjugate gradient methods are very important for solving nonlinear optimization problems. On the base of the good convergence of FR, and in view of the descend property of the paper presents a new conjugate gradient method, and studies the global convergence with two kinds of Armijo-type linear search. The numerical results show that new CG methods are very perfect.
出处
《北京工商大学学报(自然科学版)》
CAS
2008年第1期80-84,共5页
Journal of Beijing Technology and Business University:Natural Science Edition
关键词
无约束最优化
Armijo型线性搜索
共轭梯度法
全局收敛性
unconstrained optimization
armijo-type linear search
conjugate gradient method
global convergence property