期刊文献+

Role of Arabidopsis RAP2.4 in Regulating Light-and Ethylene-Mediated Developmental Processes and Drought Stress Tolerance 被引量:30

Role of Arabidopsis RAP2.4 in Regulating Light-and Ethylene-Mediated Developmental Processes and Drought Stress Tolerance
原文传递
导出
摘要 Light and the plant hormone ethylene regulate many aspects of plant growth and development in an overlapping and interdependent fashion. Little is known regarding how their signal transduction pathways cross-talk to regulate plant development in a coordinated manner. Here, we report functional characterization of an AP2/DREB-type transcription factor, Arabidopsis RAP2.4, in mediating light and ethylene signaling. Expression of the RAP2.4 gene is down-regulated by light but up-regulated by salt and drought stresses. RAP2.4 protein is constitutively targeted to the nucleus and it can bind to both the ethylene-responsive GCC-box and the dehydration-responsive element (DRE). We show that RAP2.4 protein possesses an intrinsic transcriptional activation activity in yeast cells and that it can activate a reporter gene driven by the DRE cis-element in Arabidopsis protoplasts. Overexpression of RAP2.4 or mutation in RAP2.4 cause altered expression of representative light-, ethylene-, and drought-responsive genes. Although no salient phenotype was observed with a rap2.4 loss-of-function mutant, constitutive overexpression of RAP2.4 results in defects in multiple developmental processes regulated by light and ethylene, including hypocotyl elongation and gravitropism, apical hook formation and cotyledon expansion, flowering time, root elongation, root hair formation, and drought tolerance. Based on these observations, we propose that RAP2.4 acts at or downstream of a converging point of light and ethylene signaling pathways to coordinately regulate multiple developmental processes and stress responses. Light and the plant hormone ethylene regulate many aspects of plant growth and development in an overlapping and interdependent fashion. Little is known regarding how their signal transduction pathways cross-talk to regulate plant development in a coordinated manner. Here, we report functional characterization of an AP2/DREB-type transcription factor, Arabidopsis RAP2.4, in mediating light and ethylene signaling. Expression of the RAP2.4 gene is down-regulated by light but up-regulated by salt and drought stresses. RAP2.4 protein is constitutively targeted to the nucleus and it can bind to both the ethylene-responsive GCC-box and the dehydration-responsive element (DRE). We show that RAP2.4 protein possesses an intrinsic transcriptional activation activity in yeast cells and that it can activate a reporter gene driven by the DRE cis-element in Arabidopsis protoplasts. Overexpression of RAP2.4 or mutation in RAP2.4 cause altered expression of representative light-, ethylene-, and drought-responsive genes. Although no salient phenotype was observed with a rap2.4 loss-of-function mutant, constitutive overexpression of RAP2.4 results in defects in multiple developmental processes regulated by light and ethylene, including hypocotyl elongation and gravitropism, apical hook formation and cotyledon expansion, flowering time, root elongation, root hair formation, and drought tolerance. Based on these observations, we propose that RAP2.4 acts at or downstream of a converging point of light and ethylene signaling pathways to coordinately regulate multiple developmental processes and stress responses.
出处 《Molecular Plant》 SCIE CAS CSCD 北大核心 2008年第1期42-57,共16页 分子植物(英文版)
基金 We thank Dr Jungmook Kim (Chonnam National University, Korea) for sharing the 4x DRE::GUS reporter construct (Kim et al., 2002). We also thank Erica Fishel and Ling Xu for technical assistance during this work. We thank Zhi-Liang Zheng (Lehman College, City University of New York), Pradeep Kachroo (University of Kentucky), and Elizabeth Estabrook (Boyce Thompson Institute) for their read- ing and comments on the manuscript. Thanks are also due to ABRC for distributing seeds and cDNA clones. This research was partially supported by set-up funds from Boyce Thompson Institute, Triad Foundation, and National Science Foundation (MCB-0420932 and IOS-0641639) to H.W.
关键词 RAP2.4 transcription factor light signaling ethylene response drought tolerance. RAP2.4 transcription factor light signaling ethylene response drought tolerance.
  • 相关文献

参考文献92

  • 1Aharoni, A., Dixit, S., Jetter, R., Thoenes, E., van Arkel, G., and Pereira, A. (2004). The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 16, 2463-2480.
  • 2Allen, M.D., Yamasaki, K., Ohme-Takagi, M., Tateno, M., and Suzuki, M. (1998). A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J. 17, 5484-5496.
  • 3Alonso, J.M., et al. (2003). Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301,653-657.
  • 4Ballesteros, M.L., Bolle, C., Lois, L.M., Moore, J.M., Vielle-Calzada, J.P., Grossniklaus, U., and Chua, N.H. (2001). LAF1, a MYB transcription activator for phytochrome A signaling. Genes Dev. 15, 2613-2625.
  • 5Bolle, C., Koncz, C., and Chua, N.-H. (2000). PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction. Genes Dev. 14, 1269-1278.
  • 6Briggs, W.R., and Olney, M.A. (2001). Photoreceptors in plant photomorphogenesis to date: five phytochromes, two cryptochromes, one phototropin, and one superchrome. Plant Physiol. 125, 85-88.
  • 7Broan, R, Poindexter, R, Osborne, E., Jiang, C., and Riechmann, J.L. (2004). WIN1, a transcriptional activator of epidermal wax accum ulation in Arabidopsis. Proc. Natl. Acad. Sci. USA 101,4706-4711.
  • 8Chen, M., Wang, Q.Y., Cheng, X.G., Xu, Z.S., Li, L.C., Ye, X.G., Xia, L.Q., and Ma, Y.Z. (2007). GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem. Biophys. Res. Commun. 353, 299-305.
  • 9Cheong, Y.H., Chang, H.-S., Gupta, R., Wang, X., Zhu, T., and Luan, S. (2002). Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol. 129, 661-677.
  • 10Clough, S.J., and Bent, A.E (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743.

同被引文献153

引证文献30

二级引证文献204

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部