期刊文献+

Existence of Four Periodic Solutions of a Ratio-Dependent Predator-Prey Model with Exploited Terms 被引量:1

Existence of Four Periodic Solutions of a Ratio-Dependent Predator-Prey Model with Exploited Terms
下载PDF
导出
摘要 We study a non-autonomous ratio-dependent predator-prey model with exploited terms. This model is of periodic coefficients, which incorporates the periodicity of the varying environment. By means of the coincidence degree theory, we establish sufficient conditions for the existence of at least four positive periodic solutions of this model. We study a non-autonomous ratio-dependent predator-prey model with exploited terms. This model is of periodic coefficients, which incorporates the periodicity of the varying environment. By means of the coincidence degree theory, we establish sufficient conditions for the existence of at least four positive periodic solutions of this model.
出处 《Wuhan University Journal of Natural Sciences》 CAS 2008年第1期1-5,共5页 武汉大学学报(自然科学英文版)
基金 Supported by the China Postdoctoral Science Foundation (20060400267)
关键词 predator-prey model RATIO-DEPENDENT exploited term periodic solution coincidence degree predator-prey model ratio-dependent exploited term periodic solution coincidence degree
  • 相关文献

参考文献2

二级参考文献8

  • 1Arditi, R., Ginzburg, L.R. Coupling in predator-prey dynamics: ratio-dependence. J. Ther. Biol., 139:311-326 (1989).
  • 2Berryman, A.A. The origins and evolution of predator-prey theory. Ecology, 75:1530-1535 (1992).
  • 3Fan,M., Wang, Q., Zou,X. Dynamics of a non-autonomous ratio-dependent predator-prey system. Proceedings of the Royal Society of Edinburgh, 133A: 97-118 (2003).
  • 4Gaines, R.E., Mawhin, J.L. Coincidence degree and non-linear differential equations. Springer-Verlag,Berlin, 1977.
  • 5Ma, Z. Mathematical modeling and studying on species ecology. Education Press, Hefei, 1996 (in Chinese).
  • 6Zhang, Z,, Zeng, X. A periodic stage-structure Model. App. Math. Letters, 16:1053-1061 (2003).
  • 7Gaines R. E. , Mawhin J. L. Coincidence degree and non-linear differential equations [M]. Berlin:Springer, 1977.
  • 8Zhang Zhengqiu, Zeng Xianwu. A periodic stage-structure Model[J]. App. Math. Letters, 2003, 16:1053-1061.

共引文献26

同被引文献5

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部