摘要
利用递归数列、同余式和平方剩余几种初等方法,证明了不定方程x3+64=21y2仅有整数解(x,y)=(-4,0),(5,±3);给出了x3+64=21y2的全部整数解.
In this paper, the author has proved that the Diophantine equation x^3+64=21y^2 has only an integer solution(x,y) = ( -4,0), (5, ±3) and then gives all integer solution of x^3 +64 =21y^2 by using the elementary methods such as recursive sequence,congruent fomula and quadratic residue.
出处
《重庆工商大学学报(自然科学版)》
2008年第1期9-11,22,共4页
Journal of Chongqing Technology and Business University:Natural Science Edition
基金
重庆市教委科研基金项目(KJ050807)
关键词
不定方程
整数解
递归数列
平方剩余
Diophantine equation
integer solution
recursive sequence
quadratic residue