期刊文献+

增强抗背景干扰能力的均值移动目标跟踪算法 被引量:3

Algorithm for Object Tracking Using Improved Histogram Back-projection and Mean-shift with Enhanced Ability of Anti-jamming
下载PDF
导出
摘要 根据目标和背景颜色直方图的特点,针对异色背景干扰和近色背景干扰,提出了一种改进直方图映射和均值移动结合的目标跟踪算法,通过目标主分量提取和干扰分量鉴别,有效地剔除了背景干扰成分,提高了抗背景干扰能力;均值移动算法在生成灰度图中能快速准确定位目标位置。仿真实验结果证明,改进的直方图映射算法能有效地抑制背景干扰,甚至能抑制与目标色调相近的背景干扰,并验证了跟踪算法的实用性和有效性。 Object tracking technique based on vision is of wide practical value. Color histogram has good stability and isn't influenced by the variation of shape and scale of objects; meanwhile the algorithm for mean-shift can get local best key and is speedy and effective. So the algorithm for object tracking using improved histogram back-projection and mean-shift is widely used. One of the difficulties of object tracking is how to suppress the interference of background. According to the characteristic of object and the color histogram of background, this paper proposes an algorithm for object tracking using improved histogram back-projection and mean-shift which eliminates the interference distilling the main elements of object and distinguishing interference elements elements of background by and improves the ability of anti-jamming. Mean-shift rapidly locates the object in the value images. Contrastive experimental results show that the improved algorithm can suppress the interference of background which has different or similar color with tracked object and validate the practicability and validity of this algorithm.
出处 《信息与电子工程》 2008年第1期40-45,共6页 information and electronic engineering
基金 国家自然科学基金资助项目(60672094) 江苏省高校高新技术产业发展项目(JH02-076)
关键词 目标跟踪 均值移动 颜色直方图 异色背景干扰 近色背景干扰 object tracking mean-shift color histogram interference of background with differentcolor interference of background with similar color
  • 相关文献

参考文献11

  • 1[1]FUKUNAGE K,HOSTETLER L D.The estimation of the gradient of a density function with application in pattern recognition[J].IEEE Trans.on Information Theory,1975,21(1):32-40.
  • 2[2]CHENG Y.Mean shift,mode seeking and clustering[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1995,17(8):790-799.
  • 3[3]COMANICIU D,MEER P.Mean shift analysis and application[C]// Proceedings of the Seventh IEEE International Conference Computer Vison,1999,(2):1197-1203.
  • 4[4]COMANICIU D,MEER P.Mean shift:a robust application toward feature space analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603-619.
  • 5[5]COMANICIU D,MEER P.Robust analysis of feature spaces:color image segmentation[C]// Proc.1997 IEEE conf.Computer Vision and Pattern Recognition.San Juan,Puerto Rico:IEEE,1997.
  • 6[6]YANG Changjiang,Ramani DURAISWAMI,Larry DAVIS.Similarity measure for nonparametric kernel density based object tracking[C]// Eighteenth Annual Conference on Neural Information Processing Systems.Victoria,British Columbia,Canada:NIPS,2004.
  • 7[7]Robert T,COLLINS.Mean-shift blob tracking through scale space[C]// 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR'03),2003,2:234-240.
  • 8[8]NUMMIARO K,Koller-MEIER E,Van GOOL L.Color features for tracking non-rigid objects.Special Issue on Visual Surveillance[J].Chinese Journal of Automation,2003,29(3):345-355.
  • 9[9]Lee J H,Lee W H,Jeong D S.Object-tracking Method Using Back-projection of Multiple Color Histogram Models[J].Circuits and Systems,2003,2(2):668-671.
  • 10张立东,毕笃彦.基于改进直方图映射和均值移位目标跟踪算法[J].计算机工程,2006,32(20):25-27. 被引量:3

二级参考文献5

  • 1Comaniciu D,Ramesh V,Meer P.Kernel-based Object Tracking[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,2003,25(5):564-577.
  • 2Cheng Y,Shift M.Mode Seeking and Clustering[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1995,17(8):790-799.
  • 3Bradski G R.Computer Vision Face Tracking for Use in a Perceptual User Interface[J].Intel Technology Journal,1998,5(1):58-76.
  • 4Lee J H,Lee W H,Jeong D S.Object-tracking Method Using Back-projection of Multiple Color Histogram Models[J].Circuits and Systems,2003,2(2):668-671.
  • 5Fukunaga K,Hostetler L D.The Estimation of the Gradient of a Density of Function,with Applications in Pattern Recognition[J].IEEE Trans.on Information Theory,1975,21(1):32-40.

共引文献2

同被引文献35

  • 1张崚,路威,管华.基于小波变换的Laws纹理测度在植被分割中的应用[J].大学数学,2005,21(2):5-9. 被引量:7
  • 2陈锻生,刘政凯.肤色检测技术综述[J].计算机学报,2006,29(2):194-207. 被引量:118
  • 3朱胜利,朱善安,李旭超.快速运动目标的Mean shift跟踪算法[J].光电工程,2006,33(5):66-70. 被引量:50
  • 4万缨,韩毅,卢汉清.运动目标检测算法的探讨[J].计算机仿真,2006,23(10):221-226. 被引量:121
  • 5Comaniciu D,Ramesh V,Meer P.Kernel-Based Object Tracking[J].IEEE Trans.Pattern Analysis and Machine Intelligence,2003,25(5):564-575.
  • 6Comaniciu D,Meer P.Mean Shift:A Robust Approach toward Feature Space Analysis[J].IEEE Trans.Pattern Analysis and Machine Intelligence,2002,24(5):603-619.
  • 7Cheng Y.Mean Shift,Mode Seeking,and Clustering[J].IEEE Trans.Pattern Analysis and Machine Intelligence,1995,17(8):790-799.
  • 8Hager G D,Dewan M,Stewart C V.Multiple Kernel Tracking with SSD[C]//Proc.IEEE Conf.Computer Vision and Pattern Recognition.Washington,DC,USA:[s.n.],2004:790-797.
  • 9Fan Z,Yang M,Wu Y.Multiple Collaborative Kernel Tracking[J].IEEE Trans.Pattern Analysis and Machine Intelligence,2007,29(7):1268-1273.
  • 10Qu W,Schonfeld D.Robust Control-Based Object Tracking[J].IEEE Trans.Image Processing,2008,17(9):1721-1726.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部