期刊文献+

基于混合优化算法的神经元PID控制策略 被引量:2

Control Strategy for Neuron PID Controller Based on Hybrid Optimization Algorithm
下载PDF
导出
摘要 为解决传统比例-积分-微分(PID)控制器在实际工业过程中难以满足控制要求的问题,将二次型性能指标引入到神经元的加权系数的调整中,并利用自学习功能构成了神经元自适应PID控制器。利用混沌优化算法和最速下降法结合起来的混合优化算法,对神经元自适应PID控制器的学习速率和神经元比例系数进行了优化。仿真实验和结果分析表明:该混合优化神经元自适应PID控制器具有很好的动态和静态性能,系统的稳定性和鲁棒性增强,学习参数选择的盲目性和对经验的高度依赖性降低。 Because it is difficult for the conventional Proportional Integral Differential(PID) controller to meet the control requirements in the actual industrial control process, a self-adaptive PID controller of neural network is designed in this paper. It imports the quadratic-form performance index to the setting of neuron weight coefficient and utilizes the self-learning function of neuron. Furthermore, hybrid optimization algorithm combining the chaos optimization algorithm and the steepest descent method is used to search for the optimum parameters of the self-adaptive PID controller of neural network. Simulation experimental results and experimental analysis prove the superiority of the hybrid optimum neural PID controller. It has better dynamical and static performance, the fitness and robustness of the system are strengthened, and the blindness of selecting learning factors and the high dependency on experience are debased.
出处 《信息与电子工程》 2008年第1期64-67,74,共5页 information and electronic engineering
关键词 PID控制器 神经元 最速下降法 混沌优化 混合优化 PID controller neuron steepest descent method chaos optimization hybrid optimization
  • 相关文献

参考文献5

  • 1[1]Zhang Yai.Updating learning rates for back-propagation network[C]// Proceedings of 1993 International Joint Conference on Neural Networks,Nagoya,1993:569-572.
  • 2陶永华,等.新型PID控制及其应用.北京:机械工业出版社,2001.
  • 3[5]Liu Shensong,Hou Zhijian.Weighted gradient direction based chaos optimization algorithm for nonlinear programming problem[C]// Proceedings of the 4th World Congress on Intelligent Control and Automation,2002,3:1779-1783.
  • 4李文,梁昔明.基于混沌优化和最速下降法的一种混合算法[J].计算技术与自动化,2003,22(2):12-14. 被引量:25
  • 5徐宁,周尚波,张红民,虞厥邦.一种混合混沌优化方法及其应用[J].系统工程与电子技术,2003,25(2):226-227. 被引量:17

二级参考文献6

共引文献38

同被引文献8

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部