期刊文献+

形状记忆合金力学特性的细观力学分析 被引量:3

Micromechanical Analysis of Mechanical Property of Shape Memory Alloy
下载PDF
导出
摘要 在形状记忆合金的本构模型中,有效复合模量是很重要的因素.工程计算中,一般采用经验公式,但缺乏深入的理论分析和实验数据支持.本文基于Eshelby等效夹杂原理和Mori-Tanaka方法,分析形状记忆合金的有效复合模量,推导了相应的计算公式,与文献中的经验公式比较,进行误差分析,并分析了不同的有效复合模量计算对形状记忆合金的应力-应变曲线的影响,从理论上论证经验公式的可行性,为形状记忆合金的设计和使用提供理论依据. The effective modulus is one of the important parameters of constitutive model for shape memory alloy. The empirical relations generally lack of supports from theory analysis and experimental datum. In this paper, the analytical model of effective modulus for shape memory alloy is developed based on Eshelby inclusion method and Mori-Tanaka scheme. The attentions are paid to analyze relative error compared with empirical relations and study the effects on stress-strain curves with different effective modulus. The results show that the empirical relations are in good agreement with the micromechanical value. The present work provides theoretical evidence for empirical relations in designing shape memory alloys.
出处 《北京交通大学学报》 EI CAS CSCD 北大核心 2008年第1期119-122,126,共5页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金 国家自然科学基金资助项目(50539030 90205007 10772021) 教育部留学回国人员科研启动基金资助项目
关键词 形状记忆合金 有效复合模量 本构模型 细观力学 shape memory alloy effective modulus constitutive model micro mechanics
  • 相关文献

参考文献20

  • 1Liang C, Rogers C A. A One-Dimensional Thermomechanical Constitutive Relation of Shape Memory Materials [J]. Journal of Intelligent Material Systems and Structures,1990,1:207 - 234.
  • 2Liang C, Rogers C A. The Mutidimensional Constitutive Relations of Shape Memory Alloys [ J]. AIAA Journal, 1991, 91 - 1165:178 - 185.
  • 3Sun Q P, Hwang K C. Micromechanics Modeling for the Constitutive Behavior of Polyscrystalline Shape Memory Alloy[J]. Journal of the Mechanics and Physics of Solids, 1993, 41 : 1 - 33.
  • 4Boyd J G, Lagoudas D C. Thermomechanical Response for the Shape Memory Composites[J]. Journal of Intelligent Material Systems and Structures, 1994, 5:333- 346.
  • 5Boyd J G, Langoudas D C. A Thermodynamic Constitutive Model for Shape Memory Materials: Part Ⅰ. The Monolithic Shape Memory Alloys[J]. International Journal of Plasticity, 1996, 12: 805-842.
  • 6Graesser E J, Gozzarelli F A. A Proposed Three-Dimensional Constitutive Model for Shape Memory Alloys [J]. Journal of Intelligent Material Systems and Structures, 1994, 5: 78- 89.
  • 7kDiani M, Sabar H, Breveiller M. Micromechanical Modeling of the Transformation Induced Plasticity Phenomenon in Steels[J]. International Journal of Engineering Science, 1995, 33: 1921- 1932.
  • 8Zhang J X, Fung P C, Zeng W G. Dissipation Function of the First-Order Phase Transformation in Solids Via Internal-Friction Measurements[J]. Physical Review B, 1995, 52:268 - 276.
  • 9Zhang J X, Yang Z H, Fung P C. Dissipation Function of the First-Order Phase Transformation in VO2 Ceramics by Internal-Friction Measurements [ J]. Physical Review B, 1995, 52: 278-284.
  • 10Benzaoui H, Lexcellent C, Chaillet N, et al. Experimental Study and Modeling of A TiNi Shape Memory Alloy Wire Actuator[J]. Journal of Intelligent Material Systems and Structures, 1997, 8: 619- 629.

同被引文献28

  • 1左晓宝,李爱群,倪立峰,陈庆福.超弹性形状记忆合金丝(NiTi)力学性能的试验研究[J].土木工程学报,2004,37(12):10-16. 被引量:48
  • 2Auricchio F, Marfia S, Sacco E. Modeling of SMA materials: training and two way memory effects[J]. Computers and Structures, 2003,81 ( 24/25 ) : 2301 -2317.
  • 3Peultier B, Zineb T B, Patoor E. Macroscopic constitutive law of shape memory alloy thermomechanical behavior. Application to structure computation by FEM[J].Mechanics of Materials, 2006,38 ( 5/6 ) : 510 - 524.
  • 4Rejzner J, Lexcellent C, Raniecki B. Pseudoelastic behavior of shape memory alloy beams under pure bending: experiments and modeling [J]. International Journal of Mechanical Sciences, 2002,44 ( 4 ) : 665 - 686.
  • 5Zuo Xiaobao, Li Aiqun, Ni Lifeng, et al. Experimental investigations of mechanical behavior of superelastic Ni-Ti shape memory alloy ( SMA ) wires[ C ]//Proceedings of the Third International Conference on Earthquake Engineering. Nanjing, China, 2004. 878 - 882.
  • 6Motahari S A, Ghassemieh M. Multilinear one-dimensional shape memory material model for use in structural engineering applications[J].Engineering Structures, 2007, 29(6): 904-913.
  • 7Malecot P, Lexcellent C, Foltete E, et al. Shape memory alloys cyclic behavior: experimental study and modeling[ J ]. Journal of Engineering Materials and Technology, 2006, 128(3): 335-345.
  • 8Brison L C. One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions [ J ]. Journal of Intelligent Material Systems and Structures, 1993, 4 (2) :229-242.
  • 9Kan Q H, Kang G Z. Constitutive model for uniaxial transformation ratcheting of super-elastic NiTi shape memory alloy at room temperature[J]. International Journal of Plasticity,2010, 26(3) :441 - 445.
  • 10Levitas V I, Ozsoy I B. Mieromechanieal modeling of stress-induced phase transformations. Part 1. Thermodynamics and kinetics of coupled interface propagation and reorientation [J ]. International Journal of Plasticity, 2009, 25(2) :239 - 280.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部