期刊文献+

小尺寸Au-Ag合金团簇负热容的模拟研究 被引量:3

Study on Negative Heat Capacities of Au-Ag Alloy Nanoclusters by Molecular Dynamics Simulation
下载PDF
导出
摘要 利用分子动力学方法,研究了AuN-XAgX(N=144;X=0,24,48,72,96,120和144)纳米团簇熔化过程中的热力学性质.计算模型采用原子嵌入模型(EAM)和Johnson提出的贵金属原子间相互作用势函数.模拟结果表明:金银合金团簇在熔点附近具有负热容特性,负热容主要由相变前后团簇内部结构突变引起. The thermodynamic properties of AuN-XAgX(N = 144 ; X - 0,24,48,72,96,120 and 1 44 ) nanoclusters during melting processes have been studied by molecular dynamics simulation technique within the framework of EAM and potential for noble metal. The results indicates that all the nanoclusters have negative heat capacity around the melting points, which is generated by the abrupt structure jump.
出处 《重庆文理学院学报(自然科学版)》 2008年第1期1-4,共4页 Journal of Chongqing University of Arts and Sciences
基金 重庆文理学院自然科学资助项目(Y2005WX39)
关键词 Au-Ag合金团簇 负热容 分子动力学模拟 Alloy nanoclusters Negative heat capacity Molecular dynamics simulation
  • 相关文献

参考文献7

  • 1[1]Schmidt M,Kusche R,et al.Negative heat capacity for a cluster of 147 sodium atoms[J].Phys.Rev.Lett.,2001,86(7):1191-1194.
  • 2[2]Reyes-nava J A,Ignacio L G,et al.Negative heat capacity of sodium clusters[J].Phys.Rev.,2003,B67(16):165401.
  • 3[3]Juan A.Reyes-nava,Ignacio.L Garzn,et a1.Negative heat capacity of sodium clusters[J].Phys.Rev.,2003,B67:165401.
  • 4肖绪洋,魏育新,王新强,甘飞,毋志民.金原子纳米团簇的负热容现象的分子动力学模拟研究[J].原子与分子物理学报,2004,21(1):27-30. 被引量:6
  • 5何焕典,王新强,毋志民,罗强,肖绪洋,甘飞.铜、银和铂原子纳米团簇负热容现象的分子动力学模拟研究[J].原子与分子物理学报,2005,22(3):434-438. 被引量:7
  • 6[6]Johnson R A.Alloy Models with the Embedded-atom Method[J].Phys.Rev.B39(17):12554-12559.
  • 7[7]Johmon R A.Alloy Models with the Embedded-atom Method[J].Phys.Rev.B,1989:12554.

二级参考文献20

  • 1[1]Gross D H E. Statistical decay of very hot nuclei, the production of large clusters[J]. Rep.Prog.Phys., 1990,53(5):605~658.
  • 2[2]Bixon M, Jortner J. Energetic and thermodynamics size effects in molecular clusters[J]. J.Chem.Phys., 1989,91(3):1 631~1 642.
  • 3[3]Labastie P, Whetten R L. Statistical thermodynamics of the cluster solid-liquid transition[J]. Phys.Rev.Lett., 1990,65(13):1 567~1 570.
  • 4[4]Schmidt M, Kusche R, et al. Negative heat capacity for a cluster of 147 sodium atoms[J]. Phys.Rev.Lett., 2001,86(7):1 191~1 194.
  • 5[5]Schmidt M, Kusche R, et al. Experimental determination of the melting point and heat capacity for a free cluster of 139 sodium atoms[J]. Phys.Rev.lett., 1997,79(1):99~102.
  • 6[6]Juan A Reyes-nava, Ignacio L Garzón, et al. Negative heat capacity of sodium clusters[J]. Phys.Rev., 2003,B67(16):165 401.
  • 7[7]Ercolessi F, Andreoni W, Tosatti E. Melting of small gold particles: mechanism and size effects[J]. Phys.Rev.Lett., 1991,66(7):911~914.
  • 8[8]Yu X, Duxbury P M. Kinetics of nonequilibrium shape change in gold clusters[J]. Phys.Rev., 1995,B52(3):2 102~2 106.
  • 9[9]Maiti A, Folicov L M. Phase diagram for sodium clusters[J]. Phys.Rev., 1992,A45(9):6 918~6 921.
  • 10[10]Lewis J, Jensen P, Barrat J L. Melting freezing and coalescence of gold nanoclusters[J]. Phys.Rev., 1997,B56(4):2 248~2 256.

共引文献11

同被引文献17

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部