期刊文献+

深证100指数的风险值估计方法

An Estimate Method for Value-at-Risk Incorporating Extreme Value Theory into GARCH Model
下载PDF
导出
摘要 实证研究表明,用VaR-X修正模型中的残差分布(t分布)尾部指数的简化估计方法得到的尾部指数估计值与最大观察数目选择有关,具有不稳定性.当最大观察数目足够大时,尾部指数序列的折线图是曲线,而不是直线,且采用普通最小二乘法估计时,模型存在条件异方差,会导致估计失效.采用ARCH模型或GARCH模型估计法不仅可以克服模型的条件异方差性,同时可解决最大观察数目选择难的问题. Empirical research evinces that the tail - index estimate valuable by using the tail - index estimate method of residual distributing( t - distributing ) of Var - X model has something to do with the largest observation number of choice and is unsteady . When the largest observation number is large enough, the line graph of the tail - index series is bend graph not line graph. And when adopting Ordinary Least Square estimate, model exists Heteroskedasticity. Least Squares estimate may be invalid. However,adopting ARCH or GARCH model estimate not only overcomes model Heteroskedasticity but also resolves the choice problem of the largest observation number.
作者 杨树成
出处 《重庆文理学院学报(自然科学版)》 2008年第1期15-18,共4页 Journal of Chongqing University of Arts and Sciences
基金 重庆文理学院校内资助项目(Y2005SJ41)
关键词 风险值 GARCH模型 T分布 尾部指数 risk value the model of GARCH t -distribute tail- index
  • 相关文献

参考文献7

  • 1林楚雄 高子茎等.结合GARCH模型与极值理论的风险值模型[J].管理学报,2005,22(1):133-154.
  • 2[2]Billio Monica,Loriana Pelizzon.Value-at-Risk:A Multivariate Switching Regime Approach[J].Journal of Empirical Finance,2000(7):531-554.
  • 3[3]Huisman,R.,K.Koedijk,R.A.J.Pownall.VaR-X:Fat Tails in Financial Risk Management[J].Journal of Risk,1998,1(1):47-61.
  • 4[4]Huisman,R.,K.Koedijk,C.J.M.Kool,F.Plam.Tail-Index Estimates in Small Samples[J].Journal of Business and Economic Statistics,2001,19(1):208-216.
  • 5[5]Longin,F.From Value at Risk to Stress Testing:the Extreme Value Approach[J].Journal of Money Banking and Finance,2000(24):1097-1130.
  • 6[6]Koedijk,K.,C.Kool.Tail Estimates and the EMS Target Zone[J].Review of International Economics,1994(2):153-165.
  • 7[7]McNeil,A.J.,R.Frey.Estimation of Tail-Related Risk Measure for Heteroscedastic Financial Time Series:An Extreme Value Approach[J].Journal of Empirical Finance,2000(7):271-300.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部