期刊文献+

油菜叶片蛋白质组对机械损伤应答的初步分析 被引量:14

ANALYSIS OF PROTEIN RESPONSE TO MECHANICAL WOUNDING IN LEAVES OF BRASSICA NAPUS CV.WESTAR
下载PDF
导出
摘要 植物在对抗昆虫的长期进化过程中形成了自我防御机制,能够产生特异的抗性蛋白来应对昆虫的取食。该文用机械损伤模拟害虫取食,研究和对比了油菜(Brassica napus cv.Westar)在机械损伤前后可溶性总蛋白的含量变化并试图通过蛋白质组学技术来检测可能发生变化的蛋白质。蛋白质定量检测发现,同一植株同一叶片损伤前后可溶性总蛋白含量差异显著,损伤后蛋白表达量增高。蛋白质双向凝胶电泳及其差异显示分析损伤前后的蛋白质组,表明有8个蛋白质点发生明显的上调或下调。选择其中2个差异蛋白点经过MALDI-TOF质谱鉴定,它们分别是Rubisco小亚基前体、果糖-1,6-二磷酸醛缩酶和粪卟啉-3-氧化酶,这些蛋白质可能在油菜叶片应答机械损伤过程中对维持植物的生理功能起到重要作用。 Aims Plants have evolved serf-defense mechanisms against insects and can produce insecticidal protein and other compounds. The development of proteomics has enabled study of the molecular mechanism of this defense. Oilseed rape ( Brassica napus cv. Westar) is an important oil crop in China and suffers from damage caused by insect posts and disturbances such as hail. Our objective is to investigate changes of total soluble protein and induced individual protein in B. napus using mechanical damage to mimic insect feeding. Methods We took two leaf samples from the same leaf of each plant 4 h apart and treated the first sample as mechanical damage. Total soluble protein (TP) of samples was measured by Bio-rad Protein Assay and separated by two-dimensional (2-D) polyacrylamide gel electrophoresis. Up-regulated proteins and new proteins were discriminated on the gel after staining. Two of eight different protein spots were analyzed by matrix-assisted laser demotion/ionization-time of flight mass spectrometry and identified by Mascot in database of Matrix Science. Important findings TP concentration in leaves increased when measured after wounding. The two proteins discriminated on the 2-D gel were the small subunit (SSU) precursor of ribulose-1,5-bisphosphate carboxylase (rubisco) and a mixture containing fructose-bisphosphate aldolase and coproporphyrinogen Ⅲ oxidase (COP). The sequence of rubisco SSU was first reported in B. napus, and the other two enzymes were reported in Arabidopsis thaliana, a relative of B. napus. All of these proteins have been shown to be involved in plant responses to stress. Thus we assume that these three proteins are important in maintaining plant physiological functions during wound-response in leaves of B. napus. This finding could be useful in understanding the relationship between plants and phytophagons insects at the proteomic level.
出处 《植物生态学报》 CAS CSCD 北大核心 2008年第1期220-225,共6页 Chinese Journal of Plant Ecology
基金 自然科学基金面上项目(30370228) 中国科学院植物研究所蛋白质组前沿项目 中国科学院知识创新方向性项目(KSCX2-SW-124)
关键词 蛋白质组学 总蛋白 双向电泳 肽质指纹分析 植物-昆虫互作关系 proteomics, total soluble protein, two-dimensional (2-D) polyacrylamide gel electmphoresis, MALDI-TOF-MS, plant-insect interaction
  • 相关文献

参考文献16

  • 1霍晨敏,赵宝存,葛荣朝,沈银柱,黄占景.小麦耐盐突变体盐胁迫下的蛋白质组分析[J].Acta Genetica Sinica,2004,31(12):1408-1414. 被引量:24
  • 2Karban R, Baldwin IT (1997). Induced Responses to Herbivory. University of Chicago Press, Chicago.
  • 3KeiUer DR, Mackemess SAH, Holmes MG (2003). The action of a range of supplementary ultraviolet (UV) wavelengths on photosynthesis in Brassica napus L. in the natural environment: effects on PS Ⅱ, CO2 assimilation and level of chloroplast proteins. Photosynthesis Research, 75, 139- 150.
  • 4梁宇,荆玉祥,沈世华.植物蛋白质组学研究进展[J].植物生态学报,2004,28(1):114-125. 被引量:58
  • 5Mock HP, Keetman U, Kruse E, Rank B, Grimm B (1998). Defense responses to tetrapyrrole-induced oxidative stress in transgenic plants with reduced uroporphyrinogen decarboxylase or coproporphyrinogen oxidase activity. Plant Physiology, 116, 107 - 116.
  • 6Pan RZ(潘瑞炽),Dong YD(董愚得)(1993).Plant Physiology(植物生理学)4th edn.Higher Education Press,Beijing.
  • 7Rakwal R, Komatsu S (2000). Role of jasmonate in the rice ( Oryza sativa L. ) self-defense mechanism using proteome analysis. Electrophoresis, 21, 2492- 2500.
  • 8Reymond P, Weber H, Damond M, Farmer EE (2000). Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell, 12,707 - 719.
  • 9Shen GA, Pang YZ, Wu WS, Mao ZQ, Qian HM, Zhao LX, Sun XF, Tang KX (2005). Molecular cloning, characterization and expression of a novel jasmonate-dependent defensin gene from Ginkgo biloba. Journal of Plant Physiology, 162, 1160- 1168.
  • 10Shen SH, Jing YX, Kuang TY (2003). Proteomics approach to identify wound-response related proteins from rice leaf sheath. Proteomics, 3,527 - 535.

二级参考文献101

  • 1[1]Agrawal, G. K., R. Rakwal, M. Yonekura, A. Kubo & H. Saji. 2002. Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings. Proteomics, 2: 947~959.
  • 2[2]Anderson, N. L. & N. G. Anderson. 1998. Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis, 19: 1853~1861.
  • 3[3]Barreneche, T., N. Bahrman & A. Kremer. 1996. Two dimensional gel electrophoresis confirms the low level of genetic differentiation between Quercus robur and Quercus petraea. Forest Genetics, 3: 89~92.
  • 4[4]Berndt, P., U. Hobohm & H. Langen. 1999. Reliable automatic protein identification from matrix-assisted laser desorption/ionization mass spectrometric peptide fingerprints. Electrophoresis, 20: 3521~3526.
  • 5[5]Bestel-Corre, G., E. Dumas-Gaudot, V. Poinsot, M. Kieu, J. F. Dierick, T. D. J. van Remacle, V. Gianinazzi-Pearson & S. Gianinazzi. 2002. Proteome analysis and identification of symbiosis-related proteins from Medicago truncatula Gaertn. by two-dimensional electrophoresis and mass spectrometry. Electrophoresis, 23: 122~137.
  • 6[6]Blackstock, W. P. & M. P. Weir. 1999. Proteomics: quantitative and physical mapping of cellular proteins.Trends in Biotechnology, 17: 121~127.
  • 7[7]Blee,K. A., E. R. Wheatley, V. A. Bonham, G. P. Mitchell, D. Robertson, A. R. Slabas, M. M. Burrell, P. Wojtaszek & G. P. Bolwell. 2001. Proteomic analysis reveals a novel set of cell wall proteins in a transformed tobacco cell culture that synthesises secondary walls as determined by biochemical and morphological parameters. Planta, 212: 404~415.
  • 8[8]Bouchez, D. & H. Hoffe. 1998. Functional genomics in plants. Plant Physiology, 118: 725~732.
  • 9[9]Catoira, R., C. Galera, F. de Billy, R. V. Penmetsa, E. P. Journet, F. Maillet, C. Rosenberg, D. Cook, C. Gough & J. Denarie. 2000. Four genes of Medicago truncatula controlling components of a nod factor transduction pathway. Plant Cell, 12: 1647~1666.
  • 10[10]Chang, W. W., L. Huang, M. Shen, C. Webster, A. L. Burlingame & J. K. Roberts. 2000. Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment, and identification of proteins by mass spectrometry. Plant Physiology, 122: 295~318.

共引文献79

同被引文献243

引证文献14

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部