期刊文献+

极大似然高分辨波达估计新方法(英文)

A novel algorithm for maximum likelihood high-resolution direction-of-arrival estimation
下载PDF
导出
摘要 极大似然估计器是波达方向估计中公认的最佳估计器,但是计算量很大。为了解决极大似然估计器由于进行多维格形搜索而带来的计算量大的不足,将粒子滤波方法与极大似然估计相结合,提出了一种基于粒子滤波的极大似然波达方向估计器(Maximum Likelihood DOA Estimator Based on Particle Filtering,简称MLE-PF)。研究结果表明,MLE-PF不但保持了原极大似然估计方法的优良性能,大大减小了计算量,计算复杂度由O(LK)降至O(K×Ns),而且在低信噪比时也具有比MUSIC以及MiniNorm方法更加优越的估计性能。 A novel maximum likelihood high-resolution direction-of-arrival (DOA) estimator is proposed based on particle filtering. The new method, Maximum Likelihood DOA Estimator based on Particle Filt- ering (MLE-PF), is presented to deal with the computational load of a multidimensional grid search for Maximum Likelihood Estimator (MLE), which performs best among all the methods for DOA estimation. Simulation results show that MLE-PF keeps the perfect performance of MLE and lowers the computational complexity of MLE from O(^LK) to O(KxNs). MLE-PF also performs better than MUSIC and MiniNorm, especially at low SNRs.
出处 《声学技术》 CSCD 北大核心 2007年第6期1269-1273,共5页 Technical Acoustics
基金 This work was supported by National Natural Science Found- ation of China (No.60572098).
关键词 波达方向估计 粒子滤波 高分辨 计算复杂度 DOA estimation particle filtering high-resolution computational complexity
  • 相关文献

参考文献6

  • 1Stoica Petre, Nehorai Arye. MUSIC, Maximum likelihood, and cramer-rao bound[J]. IEEE Trans on ASSP (S- 1953-587X), 1989, 37(5): 720-741.
  • 2Stoica Petre, Nehorai Arye. MUSIC, Maximum likelihood, and cramer-rao bound: Further results and comparisons [J]. IEEE Trans on ASSP (S1053.587X), 1990, 38(2): 2140- 2150.
  • 3Howard Andrew, Mataric Maja J. and Sukhatme Gaurav S. An analysis of the maximum likelihood estimator for 1-ocalization problems [A]. Proceedings of the 2nd IEEE/CreateNet International Workshop on Broadband Advanced Sensor Networks (Basenets)[C]. Boston, MA, Oct., 2005, 982-990.
  • 4Djuric Petar M., Kotecha J, ZHANG Jianqui, et al. Particle filtering [J]. IEEE Signal Processing Magazine(S1053- 5888), Sep. 2003, 20(5): 19-38.
  • 5Gordon N., Salmond D J., Smith A F M. Novel approach to nonlinear and non-gaussian bayesian state estimation [J]. IEE Proceedings-F (S0956-375X), 1993, 140(2): 107- 113.
  • 6LIU J S, CHEN R. Sequential monte carlo methods for d-ynamic systems[J]. Journal of the American Statistical Association (S0162-1459), 1998, 93(443): 1032-1044.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部