期刊文献+

加权关联规则挖掘的算法研究

The Research of Weighted Association Rules Algorithm
下载PDF
导出
摘要 信息时代的到来,产生了大量的数据。在大量的数据背后隐藏着许多重要的信息,如果能把这些信息从数据库中抽取出来,将会创造很多潜在的利润。关联规则的挖掘已被广泛应用在实际生活中。但过去的研究往往认为数据库各个项目的重要程度是相同的,而事实上,用户对项目的看重程度是不同的,因此已有算法挖掘出来的并不一定是我们感兴趣的规则。针对这种情况.提出了加权关联规则。 A lot of data is created because of the coming of the information age. There are a lot of important information in the data, the potential profit will be created if the information is extracted form the data. Minging association rules have many wide applications in some fields. The researches in the past treat th e importance of each item as uniformity. But in the fact, the importance of the items to the user is different, so all the rules mined by these proposed algorithms are not those we are interest- ed in. The weighted association rules are proposed to solve the above problem.
作者 赵园园 姜合 孙宝友 ZHAO Yuan-yuan,JIANG He,SUN Bao-you(Information Science and Technology College Shandong Institute of Light Industry, Ji'nan 250353,China)
出处 《电脑知识与技术》 2007年第11期663-665,共3页 Computer Knowledge and Technology
关键词 数据挖掘 关联规则 加权 算法 data mining association rule weight algorithm
  • 相关文献

参考文献7

二级参考文献20

  • 1Lin J L, Dunham M H. Mining association rules: anti-skew algorithms. IEEE Tran. on Knowledge Engineering, 1998 (2) : 486-493.
  • 2Brin S, Motwanti R, and Silverstein C. Beyond market baskets:generalizing association rules to correlations[C]. In: Proceedings of the ACM SIGMOD international Conference on Management of Data, 1997,265 -276.
  • 3Brin S., Motwanti R, and Ullman J, et al. Dynamic itemset counting and implication rules for market basket data [C]. In:Proceedings of the International Conference on Management of Data, 1997,255 - 264.
  • 4AgrawalR, Srikant R. Fast algorithm for mining association rules[C]. In: Proceedings of the 1994 International Conference on Very Large Data Bases. Santiago,Chile, 1994,487-499.
  • 5Agrawal R, ImielinSki T and Swami A. Mining association rules between sets of items in large database [C]. Proceeding of the ACM SIGMOD International Conference On Management of Data, 1993, (2), 207- 216.
  • 6AGRAWAL R,SRIKANT R.Fast algorithm for mining association rules[A].Proceedings of the 1994 International Conference on Very Large Data Bases[C].Santiago,Chile,1994.487 -499.
  • 7SRIKANT R,AGRAWAL R.Mining quantitative association rules in large relational tables[A].Proceedings of the ACM-SIGMOD Conference on Management of Data[C].Washington,DC,1996.1-12.
  • 8KUOK CM,FU A,WONG MH.Mining Fuzzy Association Rules in Databases[A].Proceedings of ACM Sixth International Conference on Information and Knowledge Management[C].Las Vegas,Neveda,1997.10-14.
  • 9AGRAWAL R,IMIELINSKI T,SWAMI A.Mining association rules between sets of items in large databases[A].Proceedings of the ACM SIGMOD International Conference on Management of Data[C],1993.207-216.
  • 10WANG W,YANG J,YU P.Efficient Mining of Weighted Association Rules(WAR)[A].Proceedings of ACM-SIGMOD International Conference on Management of Data[C],2000.

共引文献147

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部