期刊文献+

SOI CMOS器件研究

Study on SOI CMOS Devices
下载PDF
导出
摘要 利用0.35μm工艺条件实现了性能优良的小尺寸全耗尽的器件硅绝缘体技术(SOI)互补金属氧化物半导体(FD SOI CMOS)器件,器件制作采用双多晶硅栅工艺、低掺杂浓度源/漏(LDD)结构以及突起的源漏区。这种结构的器件防止漏的击穿,减小短沟道效应(SCE)和漏感应势垒降低效应(DIBL);突起的源漏区增加了源漏区的厚度并减小源漏区的串联电阻,增强了器件的电流驱动能力。设计了101级环形振荡器电路,并对该电路进行测试与分析。根据在3V工作电压下环形振荡器电路的振荡波形图,计算出其单级门延迟时间为45ps,远小于体硅CMOS的单级门延迟时间。 A 0.35 μm fully-depleted silicon-on-insulator (SOI) complementary metal-oxide-semiconductor (CMOS) device was fabricated by using dual-polysilicon-gate technology,raised source/drain and lowly doped source/drain (LDD) structure.The divices are good performance and small dimension, and it can prevent from drain breakdown,suppresse the short-channel effect (SCE) and draln-inducedbarrier-lowing effect (DIBL) .The current drivability and reducing series resistance in raised source/drain.A was increased due to increasing thickness size 101 stages ring oscillator was designed, and the circuit was analysed. Based on the oscillating wave figure of the circuit with 3V supply voltage, the delay of per stage is 45 ps, which is far less than that of bulk silicon CMOS.
出处 《微纳电子技术》 CAS 2008年第2期74-77,共4页 Micronanoelectronic Technology
基金 浙江省自然科学基金资助项目(Y105607)
关键词 绝缘体上硅 全耗尽器件 电流驱动能力 互补金属氧化物半导体低掺杂浓度源/漏结构 双多晶硅栅 silicon-on-insulator (SOI) fully-depleted device current drivability complementary metal-oxide-semiconductor (CMOS) lowly doped source/drain (LDD) structure dual-polysilicon gate
  • 相关文献

参考文献8

  • 1IBM advances chip technology with break through for making faster, more efficient semiconductor [EB/OL] . [2006-10] , http: //www. ibm. com/News/.
  • 2CHAN M, SUP. Modeling the floating-body efects of fully depleted,partially depleted and body-grounded SOl MOSFETs [J] .IEEE Solid-State Electronics, 2004, 48 (5): 969-978.
  • 3侯永田,李名复,金鹰.深亚微米MOS器件中栅介质层的直接隧穿电流(英文)[J].Journal of Semiconductors,2002,23(5):449-454. 被引量:2
  • 4杨国勇,王金延,霍宗亮,毛凌锋,谭长华,许铭真.热载流子应力下超薄栅p MOS器件氧化层陷阱电荷的表征(英文)[J].Journal of Semiconductors,2003,24(3):238-244. 被引量:2
  • 5CHAUDHRY A, KUMAR M J. Controlling short-channel effects in deep-submicron SOI MOSFETs for improved reliability: a review [J] .IEEE Transactions on Device and Materials Reliability, 2004, 4 (1): 99-109.
  • 6SHAHIDI G G. A room temperature 0.1 micro CMOS on SOI [J] . IEEE Transactions on Electron Devices, 1994, ED-42 (5): 2405-2411.
  • 7CHAN M, SUP. Modeling the floating-body efects of fully depleted,partially depleted, and body-grounded SOl MOSFETs [J] . IEEE Solid-State Electronics, 2004, 48 (5): 969-978.
  • 8EMINENTE S, CRISTOLOVEANU S. Ultra-thin fully-depleted SOI MOSFETs: special charge properties and coupling effects [J] . Solid-State Electronics, 2007, 51 (2): 239-244.

二级参考文献43

  • 1[1]Hu C,Tam S,Hsu F,et al.Hot-electron-induced MOSFETdegradation-model,monitor,and improvement.IEEE Trans Electron Devices,1985,ED-32:375
  • 2[2]Kuo M,Seki K,Lee P,et al.Simulation of MOSFET lifetime and AC hot-electron stress.IEEE Trans Electron Devices,1988,35:1004
  • 3[3]Sun W,Rosenbaum E,Kang S.Fast timing simulation forsubmicron hot-carrier degradation.In:Proc Int Reliab Phys Symp Tech,1995:65
  • 4[4]Doyle B,Mistry K R.A lifetime prediction method for hot-carrier degradation in surface-channel p-MOS devices.IEEE Trans Electron Devices,1990,37:1301
  • 5[5]Bravaix A,Vuillaume D.Simple charge-pumping method to measure the logarithmic-time dependence of trapped oxide charge in pMOSFET's.Microelectron Eng,1992,19:469
  • 6[6]Bravaix A,et al.Influences of the different degradation mechanisms in AC-stressed p-MOSFETs during pass transistor operation.Microelectron Eng,1997,36:305
  • 7[7]Rosa L,Guarin F,Rauch S,et al.NBTI-channel hot carrier effects in pMOSFET's in advanced CMOS technologies.Proc IEEE Int Reliab Phys Symp,1997:282
  • 8[8]Lin C,Biesemans S,Han L K,et al.Hot carrier reliability for 0.13μm CMOS technology with dual gate oxide thickness.In:IEDM Tech Dig,2000:135
  • 9[9]Li E,Rosenbaum E,Tao J,et al.Projecting lifetime of deep submicron MOSFETs.IEEE Trans Electron Devices,2001,ED-48:671
  • 10[10]Woltjer R,Paulzen G M,Lifka H,et al.Positive oxide-charge generation during 0.25 pMOSFET hot-carrier degradation.IEEE Electron Devices Lett,1994,15:427

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部