期刊文献+

一种基于优化小波神经网络的语音识别 被引量:3

Speech recognition using an optimized wavelet neural network
下载PDF
导出
摘要 在以往的BP小波神经网络中,最常用的学习算法是BP算法,BP算法实质上就是梯度下降法,是一种局部搜索算法,梯度下降法使得网络极易陷入局部最小值,从而使得网络训练结果不尽人意,搜索成功概率低.取代传统的梯度下降法,利用粒子群算法对小波神经网络中的参数进行优化.然后利用基于粒子群优化(PSO)的小波神经网络进行抗噪声语音识别实验,仿真结果表明,与BP网络相比,PSO算法在迭代次数、函数逼近误差、网络性能方面均优于BP网络,系统的识别率也得到较大的提高. The traditional BP wavelet neural networks usually adopt BP learning algorithm. BP algorithm is a gradient descent algorithm in essence, i.e. , a local search algorithm. The gradient descent algorithm is easy to fall into a local minimum, so the result of network training is unsatisfactory. Instead of the gradient descent algorithms, we use particle swarm optimization algorithm to train the parameters of the wavelet neural network. Then we use the PSO-WNN in speech recognition in noisy environment. Compared with the BP network, the simulation results show that the iterative number, function approximation errors and the network performance are highly improved than BP network. The recognition rate are also raised.
出处 《应用科技》 CAS 2008年第2期17-20,共4页 Applied Science and Technology
基金 黑龙江省自然科学基金资助项目(F2004-09)
关键词 粒子群优化 小波神经网络 语音识别 抗噪声 particle swarm optimization wavelet neural network speech recognition speech recognition in noisy environment
  • 相关文献

参考文献5

  • 1SHI Y, EBERHART R C. A modified swarm optimizer [ C ]//IEEE International Conference on Evolutionary Computation. Anchorage, USA, 1998.
  • 2CLERK M, KENNEDY J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space [ J ]. IEEE Transaction on Evolutionary Computer, 2002, 6( 1 ) : 58-73.
  • 3EBERHART R C, SHI Y. Particle swarm optimization: developments, applications and resources [ C ]//Proc Congress on Evolutionary Computation 2001, Piscataway, USA IEEE press, 2001.
  • 4KENNEDY J, EBERHART R C. Particle swarm optimization [ C ]//IEEE International Conference on Neural Networks. [ s. 1 ] , 1995.
  • 5EBERHART R C. SHI Y. Comparing inertia weights and constriction factors in particle swarm optimization [ C ]// 2000 Congress on Evolutionary Computation. La Jolla CA, USA, 2000.

同被引文献27

  • 1白玉,陈立伟.基于遗传矢量量化和遗传神经网络的说话人识别系统[J].应用科技,2005,32(12):45-47. 被引量:1
  • 2于倩,李春利.自适应矢量量化在语音识别中的应用[J].现代电子技术,2007,30(6):128-130. 被引量:1
  • 3王社国,魏艳娜.基于遗传算法的VQ码本设计及语音识别[J].计算机工程与应用,2007,43(17):71-73. 被引量:2
  • 4高清伦,谭月辉,王嘉祯.基于离散隐马尔科夫模型的语音识别技术[J].河北省科学院学报,2007,24(2):8-11. 被引量:3
  • 5郑铁然,韩纪庆.汉语语音检索中基于音节的索引方法研究[C]//第八届全国人机语音通讯学术会议论文集.北京,中国,2005:419-424.
  • 6MANGU L, BRILL E, STOLCKE A. Finding consensus in speech recognition: word error minimization and other applications of confusion networks [ J ]. Computer Speech and Language, 2000, 14(4): 373-400.
  • 7XUE Jian, ZHAO Yunxin. Improved confusion network algorithm and shortest path search from word Lattice [ C ]// Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Philadelphia, USA, 2005: 853 -856.
  • 8ZHANG Pengyuan, SHAO Jian, ZHAO Qingwei, et al. Keyword spotting based on syllable confusion network [ C ]//The Third International Conference on Natural Computing. Haikou, China, 2007: 656-659.
  • 9YONG S, EVERMANN G, GALES M. The HTK book (for HTK 3.3 ) [ EB/OL ]. [ 2009-11-25]. Http: //htk. eng. cam. ac. uk.
  • 10GOODMAN J T. A bit of progress in language modeling[ J]. Computer Speech and Language, 2001, 15(4) : 403434.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部