期刊文献+

射影平坦Finsler度量的解析构造(英文)

The Explicit Construction of Projectively Flat Finsler Metrics
下载PDF
导出
摘要 利用Hamel关于射影平坦的基本方程,我们导出了Randers度量的λ形变保持射影平坦的充分条件.特别,对一类具有特殊旗曲率性质的Randers度量我们证明了这类度量一定存在保持射影平坦性的λ形变. By using Hamel's fundamental equation of projective flatness we identify when the γ-deformations of Randers metrics preserve the property of being projectively flat. In particular, we show that there exists a γ-deformation perserving projective flatness for a class of Randers metric with special flag curvature.
作者 叶萍恺
机构地区 丽水学院数学系
出处 《数学进展》 CSCD 北大核心 2008年第1期47-56,共10页 Advances in Mathematics(China)
关键词 FINSLER流形 RANDERS度量 旗曲率 Finsler manifold Randers metric flag curvature
  • 相关文献

参考文献12

  • 1Antonelli, P.L., Ingarden, R.S. and Matsumoto, M., The Theorey of Sprays and Finsler Spaces With Applications in Physics and Biology, FTPH58, Kluwer Academic Publishers, 1993.
  • 2Berwald, L., Uber die n-dimensionalen Geometrien Konstanter Kriimmung, in denen die Geraden die kiirzesten sind, Math. Z., 1929, 30: 449-469.
  • 3Bryant, R., Projectively flat Finsler 2-sphere of constant curvature, Selecta Math., New Series, 1997, 3: 161-204.
  • 4Chen X., Mo X. and Shen Z., On the flag curvature of Finsler metrics of scalar curvature, J. London Math. Soc., 2003, 68(2): 762-780.
  • 5Chen X., and Shen Z., Randers metrics with special curvature properties, Osaka J. Math., 2003, 40: 87-101.
  • 6Chern, S.S. and Shen Z., Riemann-Finsler Geometry, World Scientific, 2005.
  • 7Hamel, G., Uber die Geometrien in denen die Geraden die Kurzesten sind, Math. Z., 1903, 40: 231-264.
  • 8Hilbert, D., Mathematical Problems, Bull. of Amev. Math. Soc., 2001, 37: 407-436.
  • 9Mo X. and Yang C., The explicit construction of Finsler metrics with special curvature properties, to appear in: Diff. Geom. Appl.
  • 10Shen Z., Projectively flat Randers metrics with constant flag curvature, Math. Ann., 2003, 325: 19-30.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部