期刊文献+

基于改进粒子群优化技术的拜耳法物料平衡计算 被引量:1

Bayer material balance computation based on improved particle swarm optimization algorithm
下载PDF
导出
摘要 分析了氧化铝生产工艺中物料平衡计算的特点,研究了拜耳法生产工艺流程和拜耳法物料平衡计算的数学模型.针对传统粒子群算法(PSO)存在的不足,给出了具有变异因子并能很好跳出局部最优解的新型粒子群算法(IPSO),并应用于氧化铝生产中的物料平衡计算.计算结果表明:优化后的粒子群算法具有较强的全局搜索能力和较高的收敛精度,是进行拜耳法物料平衡计算的有效方法. This paper firstly analyzed the characteristic of the material balance computation (MBC) in alumina production, and Bayer process was briefly introduced. Then, math model of MBC was presented. In order to solve the problems of easily falling into local optimum solution and slow convergence speed of the traditional PSO, an improved particle swarm optimization (IPSO) with stochastic mutation was proposed based on the gathering degree and the steady degree. During the iterating process, the mutation probability of the current particle was determined by the means of all the particlefs fitness, the gathering degree and the steady degree. The exploration ability was efficiently improved by the mutation, and the probability of falling into local optimumwas greatly decreased. The practical results of the MBC show that the new algorithm was better than the traditional PSO with both a better stability and a steady convergence. Most importantly, results demonstrateed that IPSO was more feasible and efficient in practical application, and also shed new light on the further improvement of PSO.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第1期95-98,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 湖北省自然科学基金资助项目(2006ABA072)
关键词 拜耳法 物料平衡计算 粒子群优化 Bayer process material balance computation particle swarm optimization
  • 相关文献

参考文献4

  • 1Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[C]//Proc of the Sixth International Symposium on Micro Machine and Human Science. Nagoya: IEEEPress, 1995: 39-43.
  • 2Kennedy J, Eberhart R C. Particle swarm optimization[C]//Proc of the IEEE International Conference Ⅳ on Neural Networks Ⅳ. Piscataway: IEEE Press, 1995:1 942-1 948.
  • 3Yang Shiyou, Ni Guangzheng. A particle swarm optimization-based method for multiobjeetive design optimizations [ J ]. Magnetics, IEEE Transactions, 2005, 41(5): 1 756-1 759.
  • 4Zhang LP, Yu H J, HuSX. Optimal choice of parameters for particle swarm optimization[J]. Journal of Zhejiang University: Natural Science, 2005, 6(6): 528-534.

同被引文献8

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2刘红丽,李昌禧.基于遗传算法的自动平衡数字式显示仪表的PID控制器设计[J].仪表技术与传感器,2004(12):16-17. 被引量:1
  • 3王凌.智能优化算法及其应用[M].北京:清华大学出版社,2000..
  • 4EBERHART R C, KENNEDY J. A new optimizer using particle swarm theory. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, IEEE Press, .Piscataway, NJ,1995:39 -43.
  • 5YANG L, HU W W, YANG S Y, et al. Application of Particle Swarm Optimization in Multi-sensor Multi-target Tracking. 1st International Symposium on Systems and Control in Aerospace and Astronautics, 2006:715 - 719.
  • 6LIU B, WANG L,Jin Y H ,et al. Improved particle swarm optimization combined with chaos. Chaos, Solitons and Fractals, 2005,25 ( 5 ) : 1261 - 1271.
  • 7BERGH F, ENGELBRECHT A P. A cooperative approach to particle swarm optimization. IEEE Transactions on Evolutionary Computation, 2004,8(3) :225 -239.
  • 8SONG S L, KONG L, CHENG J J, et al. A novel stochastic mutation technique for particle swarm optimization. Dynamics of Continuous Discrete & Impulsive System ,2007 (14) :500 -505.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部