期刊文献+

上下文感知服务器中基于预测的负载均衡算法 被引量:1

Prediction Based Load Balance Algorithm in Context-aware Application Server
下载PDF
导出
摘要 在上下文感知服务器中,需要收集大量的上下文信息并对其进行处理。必须通过服务器集群并采用负载均衡技术才能保证服务器的正常运行。该文提出基于预测负载进行自适应负载均衡的算法,采用支持向量机预测系统运行下一个阶段的负载量,结合当前系统各节点处理情况进行动态负载分配过程,在任务执行过程中,不进行任务的迁移以减少迁移所带来的系统消耗。通过比较表明,在负载变化较大的情况下,算法能够有效地提高服务器性能。 In the context-aware application server, large amount of context information must be collected and processed. Server cluster and load balance are critical technique to ensure the availability and reliability of context-aware server. This paper presents the predicting based load balance algorithm, which allocates task dynamically using SVM to predict the system load in next time phase and consider the current load of all nodes in the system at the same time. The task cannot be transferred to another machine when it is already allocated to one node, which can reduce the consumption of system resource. Comparison of load balancing algorithms shows that the prediction algorithms can improve the performance of server when the system load changes dramatically.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第3期124-126,共3页 Computer Engineering
基金 国家"863"计划基金资助项目"普适计算环境下新型编程模式及其支撑环境研究"(2006AA01Z101) 国家自然科学基金资助项目"基于普适环境的上下文感知共享模型研究"(60573119)
关键词 动态负载均衡 预测算法 支持向量机 上下文感知 dynamic load balance prediction algorithms SVM context-aware
  • 相关文献

参考文献5

  • 1Shivaratri N G, Krueger P, Singhal M. Load Distributing for Locally Distributed Systems[J]. IEEE Computer, 1992, 25(12): 33-45.
  • 2Barker K, Chemikov A, Chrisochoides N, et al. A Load Balancing Framework for Adaptive and Asynchronous Applications[J]. IEEE Trans. on Parallel and Distributed Systems, 2004, 15(2): 183-192.
  • 3Gu Dazhang, Yang Lin, Welch L R. A Predictive, Decentralized Load Balancing Approach[C]//Proc. of the 19th IEEE International Parallel and Distributed Processing Symposium. [S. l.]: IEEE Press, 2005.
  • 4Senger H, Sato L M. Load Distribution for Heterogeneous and Non-dedicated Clusters Based on Dynamic Monitoring and Differentiated Services[C]//Proc. of the International Conference on Cluster Computing. [S. l.]: IEEE Press, 2003.
  • 5Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995.

同被引文献8

  • 1蒋文保,郝双,戴一奇,刘庭华.高速网络入侵检测系统负载均衡策略与算法分析[J].清华大学学报(自然科学版),2006,46(1):106-110. 被引量:29
  • 2赖海光,黄皓,谢俊元.PABCS:一种用于并行入侵检测的流量划分算法[J].计算机学报,2007,30(4):555-562. 被引量:12
  • 3Koziol J.Intrusion detection with snort[M].2nd ed.Indianapolis:Sams Publisher,2003.
  • 4Colt J,Staniford S,McAlerney J.Towards faster string matching for intrusion detection or exceeding the speed of snort[C].Los Alamitos,Calif:IEEE CS Press,2001.
  • 5Sutter H.The free lunch is over:a fundamental turn toward concurrency in software[J].Doctor Dobb's Journal,2005,30(3):526.
  • 6Christopher K,Fredrik V,Giovanni V,Richard K.Stateful.Intrusion detection for high-speed networks[C].Washington,USA:[s.n.],2002.
  • 7Edwards S.Vulnerabilities of network intrusion detection system:realizing and overcoming the risks[EB/OL].(2002-03-23).[2010-06-26].http://www.toplayer.com.
  • 8邹柏贤,刘强.基于ARMA模型的网络流量预测[J].计算机研究与发展,2002,39(12):1645-1652. 被引量:107

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部