摘要
对学生学习的路径控制在智能化教学系统中是一个重要的问题。该文以知识空间理论为基础建立了学习状态空间,通过改进的微粒群算法对该学习状态空间的学习路径进行最优化控制,并利用死亡惩罚函数法把约束最优化学习路径问题转化成了无约束的最优化学习路径控制问题,引入交换子和交换序的概念对微粒群算法进行改进。在结果分析中,通过动态参数法,即动态变化交换子保留概率的方法提高微粒群的收敛效果,达到了最优化学习路径控制的目的。
One of the important problems in intelligent tutoring system is to control the student's learning path. This paper studies learning state space based on knowledge space theory, and introduces the learning path optimization problem based on improved Particle Swarm Optimization(PSO) The constrained learning path optimization problem is transformed into the non-constrained optimal learning path control study by the death penalty function. The PSO is modified and constructed via presenting the concepts of swap operator and swap sequence in the paper. The method of dynamic parameters is processed through changing retain probability of swap operator and swap sequence. The experiments show the improved PSO can achieve good results to control the learning path.
出处
《计算机工程》
CAS
CSCD
北大核心
2008年第4期190-192,195,共4页
Computer Engineering
基金
国家自然科学基金资助重点项目(70531020)
国家发改委CNGI计划基金资助项目(CNGI-04-15-5A-2)
关键词
知识空间
学习路径
微粒群优化
动态参数
knowledge space
learning path
Particle Swarm Optimization(PSO)
dynamic parameter