期刊文献+

基于动能PSO的环己醇/环己酮动力学参数估计 被引量:1

Kinetic Parameter Estimation of Oxidation Cyclohexanol and Cyclohexanone by Nitric Acid to Adipic Acid Based on Kinetic Energy PSO
下载PDF
导出
摘要 针对基本PSO算法在迭代后期粒子发生"趋同"而易陷入局部极值的问题,提出了动能粒子群算法(KEPSO)。该算法将粒子"趋同"看作粒子群体与最优粒子发生塑性碰撞的过程,通过动能补偿机制使"惰性"粒子重新恢复"活力",从而跳出局部极值。仿真结果显示,KEPSO算法大大提高了全局搜索能力,在高维函数测试中表现出了较好的优化性能。将KEPSO算法用于环乙醇/环已酮硝酸氧化动力学参数估计中,获得模型的平均相对误差绝对值之和比文献报道值分别降低了42.6%和47.3%。 A kinetic energy particle swarm optimization (KEPSO) algorithm was proposed to solve the problem that most of the particles of basic PSO would tend to be the same position and get into the local optimum easily in late iteration, As particles tending to be the same position were just like a plastic impact process, KEPSO would help them jump out of the local optimum by means of making up the kinetic energy, which could refresh the "inertia" particles. The results of the simulation showed that KEPSO strengthened the global searching ability and had better optimization performance than basic PSO in test of high-dimensional functions. Furthermore, KEPSO was applied to estimate the kinetic parameters of Oxidation Cyclohexanol and Cyclohexanone by Nitric Acid to Adipic Acid. Satisfactory results showed the absolute value of the model's average relative total error decreased by 42.6 % and 47.3 % compared with the reported literature data.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第3期784-787,共4页 Journal of System Simulation
关键词 粒子群算法 动能粒子群算法 反应动力学 参数估计 particle swarm optimization kinetic energy particle swarm optimization reaction kinetics parameter estimation
  • 相关文献

参考文献9

  • 1Kennedy J, Eberhart R C. Particle swarm optimization [C].Proceedings of the 1995 IEEE International Conference on Neutral Networks. Perth: IEEE Service Centre, 1995: 1942-1948.
  • 2He Z, Wei C,Yang L, et al.Extracting rules from fuzzy neural network by particle swarm optimization [C].Proceedings of IEEE Congress on Evolutionary Computation. Anchorage, Alaska, USA: Piscataway, NJ: IEEE, 1998: 74-77.
  • 3陈国初,俞金寿.单纯形微粒群优化算法及其应用[J].系统仿真学报,2006,18(4):862-865. 被引量:18
  • 4Eberhart R C, Shi Y. Particle swarm optimization: developments, applications and resources [C].Proceedings of the IEEE Congress on Evolutionary Computation. Piscataway, NJ: IEEE Service Center, 2001: 81-86.
  • 5Shi Y, Eberhart R C. Fuzzy Adaptive Particle Swarm Optimization [C].Proc Congress on Evolutionary Computation, Seoul, South Korea. Piscataway, NJ: IEEE Computer Society, 2001:101-106.
  • 6Angeline P J. Using selection to improve particle swarm optimization [C]. Proc. of the 1998 International Conference on Evolutionary Computation. New York, NY, USA: IEEE, 1998: 84-89.
  • 7郑启富,周兆良,徐明仙.遗传算法在环己醇/环己酮硝化氧化反应动力学模型参数估计中的应用[J].化工技术与开发,2002,31(4):5-7. 被引量:4
  • 8张晓娟,刘长厚.环己醇/环己酮硝酸氧化的反应动力学[J].高校化学工程学报,1999,13(3):264-267. 被引量:3
  • 9Angeline P J. Evolutionary optimization versus particle swarm optimization: philosophy and performance difference [C].Proc. of the 7th International Conference on Evolutionary Programming. Berlin, Germany: Springer-Verlag, 1998: 601-610.

二级参考文献15

  • 1薛福珍,柏洁.基于先验知识和神经网络的非线性建模与预测控制[J].系统仿真学报,2004,16(5):1057-1059. 被引量:14
  • 2杨杏生.己二酸生产工艺的新进展[J].合成纤维工业,1995,18(2):39-45. 被引量:12
  • 3Lothar M. Schmitt. Theory of genetic algorithms[J].Theoretical Computer Science, 2001,259:1-61.
  • 4Michael D. Vose,Jonathan E. Rowe. Random heuristic search: application to GAs and function of unitation[J]. Comput. Methods Appl. Mech. Engrg.2000,186:195-220.
  • 5Michalewicz Z. Genetic Algorithms + Data Struction = Evolution Program[M]. Springer, 1992.
  • 6扬杏生,合成纤维工业,1995年,18卷,2期,39页
  • 7王小平 曹立明.遗传算法[M].西安:西安交通大学出版社,2002..
  • 8Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proc.IEEE Int.Conf.on Neural Networks.Perth,WA,Australia,1995:1942-1948.
  • 9Eberhart R C,Kennedy J.A new optimizer using particle swarm theory[C]//Proc.the Sixth Int.Symposium on Micro Machine and Human Science.Nagoya,Japan,1995:39-43.
  • 10Eberhart R C,Shi Y.Particle swarm optimization:developments,applications and resources[C]//Proc.2001 Congress on Evolutionary computation.Seoul,South Korea,2001:81-86.

共引文献22

同被引文献8

  • 1Papamichail I,Adjiman C S.Global optimization of dynamic systems[J].Computers and Chemical Engineering,2004,28(3):403-415.
  • 2Moles C G,Mendes P,Banga J R.Parameter estimation in biochemical pathways :A comparison of global optimization methods [J].Genome Research,2003,13(11) :2467-2474.
  • 3Katare S, Bhan A,Caruthers J M,et al.A hybrid genetic algorithm for efficient parameter estimation of large kinetic models [J ].Computers and Chemical Engineering, 2004,28 (12) : 2569- 2581.
  • 4Chowdhury G M,Roy G G.Application of genetic algorithm(GA) to estimate the rate parameters for solid state reduction of iron ore in presence of graphite[J].Computational Materials Science, 2009,45 (1) : 176-180.
  • 5Kennedy J,Eberhart R C.Particle swarm optimization [C ]//IEEE International Conference on Neural Networks. Piscataway,1995.
  • 6商秀芹,卢建刚,孙优贤,练海滨.一种基于偏好的多目标遗传算法在动态模型参数辨识中的应用[J].化工学报,2008,59(7):1620-1624. 被引量:10
  • 7颜学峰,陈德钊,胡上序,丁军委.混沌遗传算法估计反应动力学参数[J].化工学报,2002,53(8):810-814. 被引量:21
  • 8杜树新.污水生化处理过程建模与控制[J].控制理论与应用,2002,19(5):660-666. 被引量:47

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部