期刊文献+

消耗率为常数的连续发酵中的非线性振荡

Limit Cycles in Continuous Fermentation with Constant Yields
下载PDF
导出
摘要 在研究2个微生物竞争同一营养的连续发酵中的非线性振荡现象时,人们常常假设消耗率为非常数。利用三维Hopf分支理论证明了消耗率为常数的连续发酵模型的极限环的存在性,为深入讨论这类模型提供了又一途径。 In order to study the nonlinear oscillation in the continuous fermentation of two competitors for a single nutrient, one has to give up the assumption of constant yields. In this paper, we prove, by using a 3 -D Hopf bifurcation, the existence of limit cycles in the continuous fermentation with constant yields, and then bring a new direction in this study.
机构地区 扬州职业大学
出处 《江西科学》 2008年第1期1-3,共3页 Jiangxi Science
关键词 连续发酵 HOPF分支 极限环 Continuous fermentation, Hopf bifurcation, Limit cycles
  • 相关文献

参考文献9

  • 1Smith H L, Waltman P. The Theory of the Chemostat [ M ]. Cambridge University, Cambridge, UK, 1995.
  • 2Pilyugin S S, Waltman P. Multiple limit cycles in the chemostat with variable yield [ J]. Math. Biosci. , 182 (2003):151 - 166.
  • 3Crooke P S, Wei C - J, Tanner R D. The effect of the specific growth rate and yield expressions on the existence of oscillatory behavior of a continuous fermentation model[ J]. Chem. Eng. Commun. , 1980,6:333 - 339.
  • 4Crooke P S,Tanner R D. Hopf bifurcations for a variable yield continuous fermentation model [ J ]. Int. J. Eng. Sci. , 1982,20:439 - 443.
  • 5Huang X C. Limit cycles in a continuous fermentation model[J]. J. Math. Chem. ,1990,5:287 -296.
  • 6Wolkowicz G S K, Lu Z. Global dynamics of a mathematical model of competition in the chemostat : general response functions and differential death rates [ J ]. SIAM J. Appl. Math. , 1992,32:222 - 233.
  • 7Zhang J. The Geometric Theory and Bifurcation Problem of Ordinary Differential Equation[ M ]. Peking University press, Beijing, 1987.
  • 8Zhu L M ,Huang X C. Relative positions of limit cycles in the continuous culture vessel with variable yield [J]. J. Math. Chem. ,2005,38(2) :119 - 128.
  • 9Huang X C, Zhu L M. A three dimensional chemostat with quadratic yield [ J ]. J. Math. Chem. , 2005,38 (4) :575 -588.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部