期刊文献+

基于支持向量机的兼类文本分类算法研究 被引量:8

Study on multi-subject text classification algorithm based on support vector machines
下载PDF
导出
摘要 针对兼类文本,提出了两种基于支持向量的分类算法。一种是采用1-a-1方法训练子分类器,通过子分类器得到待分类样本的隶属度矩阵,依据隶属度矩阵每行元素和判定该文本所属类别。另一种是采用1-a-r方法训练子分类器,通过子分类器得到待分类样本的隶属度向量,根据隶属度向量判定该文本所属的类别。实验结果表明,这两种算法都具有较好的准确率、召回率和F1值。 For multi-subject text, two classification algorithms based on support vector machines are proposed. The first method uses 1-a-1 to train sub-classifiers, for the samples to be classified, sub-classifiers are used to obtain membership matrix, and then according to the sum of every line of membership matrix, confirms the subjects that the sample belongs to. The second method uses 1-a-r to train sub-classifiers, for the samples to be classified, sub-classifiers are used to obtain the membership vector, according to the membership vector, confirms the subjects that the sample belongs to. The experimental results show that the proposed algorithms have higher performance on precision, recall and F 1 value.
出处 《计算机工程与设计》 CSCD 北大核心 2008年第2期408-410,共3页 Computer Engineering and Design
基金 国家973重点基础研究发展计划基金项目(2001CCA00700) 国家自然科学基金项目(90104031)
关键词 支持向量机 隶属度矩阵 隶属度向量 召回率 准确率 support vector machines membership matrix membership vector recall precision
  • 相关文献

参考文献8

二级参考文献53

  • 1Vapnik V.The Nature of Statistical Learning Theory[M].Springer Verlag, 1995.
  • 2Vapnik V.Statistical Learning Theory[M].New York, Wiley, 1998.
  • 3Weston J,Watkins C.Multiclass Support Vector Machines[R].TR CS- DTR9804,Department of Computer Science Egham,Surrey TW 200EX, England, 1998.
  • 4K Müller,S Mika,G Rae tsch.An Introduction to Kernel-Based Learning Algorithms[J].IEEE Neural Networks, 2001 ; 12 (2) : 181 -201.
  • 5Y Lee,Y Lin,G Wahba.Multicategory Support Vector Machines[R]. TECHNICAL REPORT,No 1043,2001.
  • 6K P Bennett.Combining support vector and mathematical programming methods for classification[J].In:B Scholkopf,C J C Burges,A J Smola eds.Advances in Kernel Methods:Support Vector Learning,The MIT Press, Cambridge, MA, 1999 : 307-326.
  • 7U H G KreBel.Pairwise classification and support vector machines[C]. In:B Scholkopf,C J C Burges,A J Smola eds.Advances in Kernel Methods :Support Vector Learning,The MIT Press, Cambridge, MA, 1999 : 255 -268.
  • 8J C Platt,N Cristianini,J Shawe-Taylor.Large margin DAGs for multiclass elassifieation[J].In:S A Solla,T K Leen,K R Muller eds.Advanees in Neural Information Processing Systems 12,The MIT Press, 2000: 547-553.
  • 9B Kijsirikul,N Ussivakul.Multiclass support vector machines using adaptive directed acyclic graph[C].In:Proceedings of International Joint Conference on Neural Networks (IJCNN2002),2002:980-985.
  • 10Shigeo Abe.Analysis of Multiclass Support Vector Machines[C] ,In:Proceedings of International Conference on Computational Intelligence for Modelling Control and Automation (CIMCA'2003),Vienna,Austria, 2003-02 : 385-396.

共引文献2403

同被引文献66

引证文献8

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部