期刊文献+

指数分布的泛逻辑自相关性

Universal logic self-correlation of exponential distributing
下载PDF
导出
摘要 指数分布是复杂控制系统中随机参数的一种常见分布。给出了广义区间,上的相关概念,研究了指数分布的泛逻辑自相关性,给出了指数分布对应的N范数、N性生成元,讨论了N范数不动点及广义自相关系数与指数分布参数之间的关系。当>0时,发现了广义自相关系数的恒负性。设参数在,+均有意义,发现了是的中心对称奇函数,即的中心对称性,以及不动点的守1性。最后举例说明了求解值的具体方法,为从泛逻辑角度来分析复杂系统中的控制参数提供了一种新的思路。 Exponential distributing is a familiar distributing of random parameters in complicated control system. The relational conceptions on generalized interval[a,b] is given, the universal logic self-correlation of exponential distributing is studied, the corresponding N-norm, N-generator is given, the relationships among N-norm's fixed point, generalized self-correlation coefficient, and parameter Ois discussed. When θ〉0, the value of generalized self-correlation coefficient k is negative, supposing parameter θ is significative on interval (-∞,+∞), that κ(θ) is a center symmetrical odd function is found, that is the center symmetrical property, and find the fixedpoint ls conservation of"1". At last, the concrete method of calculating the value ofk is illuminated with an example. The work offers a new idea of analyzing the control parameters of complicated system from the viewpoint of universal logic.
出处 《计算机工程与设计》 CSCD 北大核心 2008年第2期414-417,共4页 Computer Engineering and Design
基金 国家自然科学基金项目(60273087) 北京市科技新星计划基金项目(2006B10) 北京市教委科技发展计划面上基金项目(KM200610011002)
关键词 泛逻辑 控制参数 指数分布 广义N范数 广义自相关系数 universal logic control parameter exponential distributing generalized n-norm generalized self-correlation coefficient
  • 相关文献

参考文献10

  • 1朱燕堂.应用概率统计方法[M].西安:西北工业大出版社,2000..
  • 2毛明毅,陈志成,何华灿.复杂控制系统随机参量的广义自相关性研究[J].控制与决策,2005,20(8):860-865. 被引量:1
  • 3Mao Mingyi, Chen Zhicheng, He Huacan. Expression objectoriented of universal logic[C]. GuangZhou: IEEE 4th International Conference on Machine Leaming and Cybemetics,2005: 2593-2597.
  • 4He Huacan,Ai Lirong,Wang Hua.Uncertainties and the flexible logics[C]. Xi'an: IEEE Proceedings of 2003 International Conference on Machine Leaming and Cybernetics, 2003: 2573-2578.
  • 5Chen Zhicheng,He Huacan,Mao Mingyi.Correlation reasoning of complex system based on universal logic[C]. Xi'an:IEEE Proceedings of 2003 International Conference on Machine Leaming and Cybemetics,2003:1831-1835.
  • 6Mao Ming-yi,He Hua-can,Chen Zhi-cheng.Analysis ofkailar logic based on universal logic principles[C]. HangZhou: IEEE 3rd International Conference on Electronic Commerce Engineering, International Academic Publishers,2003:582-585.
  • 7Mao Mingyi,He Huacan, Chen Zhicheng.Embodiment of universal logic principles in BAN logic[C]. GuangZhou:Proceedings of 2003 Sino-Korea Symposium on Intelligent Systems (By NSFC and KOSEF),2003:153-156.
  • 8Chen Zhicheng,Mao Mingyi,Yang Weikang,et al.A new uniform or operation model based on generalized S-norm[C]. Kunming: 2006 Intemational Conference on Intelligent Computing,SpringerVerlag,2006:96-101.
  • 9Chen Zhicheng,Mao Mingyi,He Huacan, et al.Generalized T-norm and fractional “and” operation model [C]. Chongqing: 2006 Rough Sets and Knowledge Technology, SpringerVerlag, 2006:586-591.
  • 10Mao Mingyi,Chen Zhicheng,He Huacan.A new uniform neuron model of generalized logic operators based on [a,b][J].International Journal of Pattern recognition and Artificial Intelligence, 2006,20(2): 159-172.

二级参考文献6

  • 1朱燕堂.应用概率统计方法[M].西安:西北工业大出版社,2000..
  • 2He H C, Liu Y H, He D Q. Universal Logic in Empirical Thinking[J]. Chinese Science E, 1996, 39(2): 225-234.
  • 3陈志成.[D].西安:西北工业大学,2004.
  • 4He H C, Ai L R, Wang H. Uncertainties and the Flexible Logics[A]. IEEE Proc of 2003 Int Conf on Machine Learning and Cybernetics[C]. Xi'an, 2003, 4: 2573-2578.
  • 5Chen Z C, He H C, Mao M Y. Correlation Reasoning of Complex System Based on Universal Logic[A]. IEEE Proc of 2003 Int Conf on Machine Learning and Cybernetics[C]. Xi'an, 2003, 3: 1831-1835.
  • 6何华灿,刘永怀,白振兴,艾丽蓉,王瑛.一级泛非运算研究[J].计算机学报,1998,21(S1):24-28. 被引量:6

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部