期刊文献+

硝酸碳酰肼类含能配合物比热容的研究 被引量:2

Specific Heat Capacity of Carbohydrazide Nitric Acid Energetic Coordination Compounds
下载PDF
导出
摘要 用差示扫描量热仪(DSC)测定了一定温度区间硝酸碳酰肼类配合物硝酸碳酰肼锰(Mn(CHZ)3(NO3)2)、硝酸碳酰肼钴(Co(CHZ)3(NO3)2)、硝酸碳酰肼镍(Ni(CHZ)3(NO3)2)和硝酸碳酰肼锌(Zn(CHZ)3(NO3)2)的比热容,利用Origin7.0软件回归出比热容随温度变化的方程式,Ni(CHZ)3(NO3)2和Mn(CHZ)3(NO3)2在一些温度区间为六次函数或二、三次函数,其余大多数符合四次或五次函数,拟合时相关度最小为0.987,标准偏差最大为0.017。除Zn(CHZ)3(NO3)2外,其余三种硝酸碳酰肼盐配合物的比热容有较大变化,出现一个或多个峰值。对它们进行了热重和红外分析,200℃时仅Co(CHZ)3(NO3)2失重8.64%,其余两种的热重曲线没有变化;红外图谱显示在不同的温度下同一物质的指纹区不同,故推测样品可能发生了晶形转变而导致比热容变化。 The specific heat capacity of four carbohydrazide nitrate energetic coordination compounds [ M ( CHZ ) 3 ] ( NO3 ) 2, ( M = Mn, Co, Zn, Ni) were determined by differential scanning calorimeter ( DSC ) under a temperature range, and regression equations for the specific heat capacity changing with temperature were obtained by Origin 7.0. The equations of Ni (CHZ)3 (NO3 )2 and Mn(CHZ) 3 (NO3)2 are functions of sixth degree, second degree and third degree in some range of temperature, equations of the others mostly are functions of fourth degree or fifth degree, where the relative coefficient square is more than 0. 987, and standard deviation is smaller than 0.017. Except Zn(CHZ) 3 ( NO3 ) 2, the specific heat capacity of the compounds changes more, and one or more peaks appear in the curves of the specific heat capacity. TG and FTIR were carried through. At 200 ℃ ,only Co(CHZ)3 ( NO3 )2 loses 8.64% of its mass. As FTIR spectra are not same at different temperature,it is possible that the crystal transformation results in the change of the specific heat capacity.
出处 《含能材料》 EI CAS CSCD 2008年第1期80-82,85,共4页 Chinese Journal of Energetic Materials
关键词 分析化学 差示扫描量热法 比热容 硝酸碳酰肼锰(Mn(CHZ)3(NO3)2) 硝酸碳酰肼钴(Co(CHZ)3(NO3)2) 硝酸碳酰肼镍(Ni(CHZ)3(NO3)2) 硝酸碳酰肼锌(Zn(CHZ)3(NO3)2) analytical chemistry differential scanning calorimeter specific heat capacity Mn (CHZ)3 (NO3 )2 Co(CHZ)3(NO3)2 Ni(CHZ)3(NO3)2 Zn(CHZ)3(NO3)2
  • 相关文献

参考文献8

二级参考文献33

  • 1胡少强,张少民.聚丙烯保温材料连续比热容的测定[J].化学推进剂与高分子材料,2005,3(3):35-37. 被引量:8
  • 2LU Chun-Hua(吕春华),ZHANG Tong-Lai(张同来),ZHANG Jian-Guo(张建国),CAIRui-Jiao(蔡瑞娇),YUKai-Bei(郁开北)Gaodeng Xuexiao Huaxue Xuebao( Chemical Journal ofChinese Universities), 2000, 21 (7),1005.
  • 3ZHANG Tong-Lai(张同来),LU Chun-Hua(吕春华),QIAOXiao-Jing(乔小晶),CAIRui-Jiao(蔡瑞娇),YU Kai-Bei(郁开北)Jiegou Huaxue (Chinese Journal ofStructuralChemmistry), 1999, 6,432.
  • 4Dutta R. L., Sarkar A. K. J. Inorg. Nucl. Chem., 1981,43, 2557.
  • 5Boudadian M. M., Fidler D.A. USP 4 927 940, 1990.
  • 6Brill T. B., Zhang T. L., Tappan B.C. Combustion andFlame, 2000, 21,662.
  • 7Lee K. Y., Chapman L. B., Cobum M.D. Journal ofEnergetic Materials, 1987, 5, 27.
  • 8Tor O., Hakon H. Acta Cryst, 1979,B35, 373.
  • 9Sinditskii V. P., Serushdin V.V. Defence Science Journal,1996, 46, 371.
  • 10Sinditskii V. P., Fogelzang A. E., Dutov M.D. Zh. Neorg.Khim. (Russ. J. Inorg.Chem. ), 1986,31, 1759.

共引文献52

同被引文献14

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部