期刊文献+

三维聚合物电解质膜燃料电池中水的输运模拟(英文)

Water transport modeling of three dimensional polymer electrolyte membrane fuel cell
下载PDF
导出
摘要 针对新型螺旋形加压聚合物电解质膜燃料电池,提出了一种液态水生成和输运效应的数值模型.该数值模型基于燃料电池的物理机理、流体流动、传热导、多孔介质中的传质、电化学反应、含相变的多相流动、电流输运、多孔介质和固体导电区域中的位势场以及穿过聚合物膜的水的输运设计优化过程.在分析中还使用了燃料电池模型.例如,电化学模型——用于预测局部电流密度和电压分布;位势场模型——用于预测多孔介质以及固体导电区中的电流和电压;多相混合物模型——用于预测在多孔扩散层中的液态水和气体流;薄膜多相模型——用于研究气体流道中的液态水流.最后给出了聚合物电解质膜燃料电池液态水生成和输运的理论模型的数值结果,包括催化层和膜中的H2,O2和H2O的质量和克分子数的等值线图. A numerical modeling of liquid water formation and transport effects of a new spiralshape design of pressurized polymer electrolyte membrane (PEM) fuel cell was proposed. Based on the physical principles of fuel cells, fluid flow, heat transfer, mass transfer in porous media, electrochemical reactions, multiphase flow with phase change, transport of current and potential field in porous media and solid conducting regions, and water transport across the polymer membrane, the optimal process was designed in this numberical modeling, and fuel cell models were used to do analysis. For example, an electrochemical model was used to predict local current density and voltage distributions, a potential field model was used to predict current and voltage in porous and solid conducting regions, a multiphase mixture model was used to predict liquid water and gas flow in the porous diffusion layers, and a thin film multiphase model was used to track liquid water flow in gas flow passages. The numerical results of the theoretical modeling of liquid water formation and transport effects of the PEM fuel cells were also obtained. Results including contour plot of mass and mole fraction of H2, O2, and H2O across the catalyst layers and the membrane were given.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2008年第1期77-83,共7页 JUSTC
基金 the Space Research Institute of the King Abdulaziz City for Science and Technology.
关键词 燃料电池 聚合物电解质膜燃料电池 数值模拟 计算流体力学 能量 热分析 fuel cell PEM (polymer electrolyte membrane) fuel cell numerical modeling computational fluid dynamics (CFD) energy thermal analysis
  • 相关文献

参考文献13

  • 1Alhussan K. A spiral design in high pressurized polymer electrolyte membrane fuel cell[C]//The 22nd International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exposition, Yokohama, Japan October, 2006: EVS10371.
  • 2Alhussan K. Method of Energy Transfer [C]// International Symposium on Physics of Fluids. Huangshan, China, 2005.
  • 3Alhussan K. Application of computational fluid dynamics in discontinuous unsteady flow with large amplitude changes; The shock tube problem [J]. IASME Transaction, 2005,2(1) : 98-104.
  • 4Alhussan K. Supersonic flow over blunt body with a decelerator [J]. IASME Transaction, 2005, 1 (3): 868-871.
  • 5Alhussan K. Turbulent flow in induction mechanisms [J]. IASME Transaction, 2005,1 (3) : 872-875.
  • 6Fluent Inc. FLUENT 6.2[DB].
  • 7Kulikovsky A A, Divisek J, Kornyshev A A. Modeling the cathode compartment of polymer electrolyte fuel[J]. J Electrochemical Society, 1999, 146(11)..3 981-3 991.
  • 8Cole J V, Mazumder S. Rigorous 3-D mathematical modeling of PEM fuel cells[J]. J Electrochemical Soc, 2003,150: A1510.
  • 9Sukkee Um C Y Wang,Chen K S. Computational fluid dynamics modeling of PEM fuel cells [ J ]. J Electrochemical Society, 2000,147 (12) : 4 485-4 493.
  • 10Nam J H, Karviany M. Effective diffusivity and watersaturation distribution in single and two-layer PEMFC diffusion medium[J]. Int J Heat Mass Transfer, 2003, 46:4 595-4 611.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部