期刊文献+

微小型化学推进器的性能分析 被引量:2

Performance analysis of micro/mini-chemical thrusters
下载PDF
导出
摘要 基于详细化学反应机理对微小型化学推进器进行了零维的瞬态数值模拟.推进器的燃烧室采用良搅拌反应器模型,燃烧室后的喷管采用稳态准一维等熵流理论.着重研究了微小型化学推进器的微尺度特性和启动特性,讨论了引入多孔介质后对系统工作性能的影响.微小型化学推进器的最佳燃气流率范围随系统特征尺寸的减小而变窄;稳态推力、启动性能都优于相同条件下的冷态推进器;引入多孔介质可以提高燃烧稳定性,改善脉冲推进的再点火能力,拓宽高比冲设计工况的燃气流率范围. A zero-dimensional modeling of the operation cycle of a micro/mini-chemical propulsion system was performed based on the comprehensive detailed chemical reaction mechanism. A perfectly stirred reactor model was adopted for its combustion chamber, and the steady quasi-lD isentropic flow was used for the nozzle flow. The micro-scale effects, the startup characteristics and the influence of porous media on the propulsion performance were discussed. The optimum range of mass flow rates decreases with the thruster size; the characteristic propulsion parameters like thrust and startup-interval are superior to frozen-flow thrusters; combustion stability and the ability of pulse re-ignition can be enhanced by introducing porous media into the combustion chamber, and the optimum range of mass flow rates can also be extended.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2008年第1期94-99,104,共7页 JUSTC
基金 国家自然科学基金(50376060,50506028)
关键词 微小型化学推进器 最佳燃气流率范围 多孔介质 启动 micro/mini-chemical thruster optimum mass flow rate range porous media startup
  • 相关文献

参考文献9

  • 1Mueller J. Thruster options for microspacecraft: A review and evaluation of existing hardware and emerging technologies[C]//33rd AIAA/ASME/SAE/ ASEE/ Joint Propulsion Conference and Exhibit. AIAA 97-3058, 1997.
  • 2Caceres M. The emerging nanosatellite market[J]. Aerospace America, 2001, 39: 16-18.
  • 3Bromaghim D R, LeDuc J R, Salasovich R M, et al. Review of the electric propulsion space experiment (ESEX) program [J]. Journal of Propulsion and Power, 2002, 18(4): 723-730.
  • 4Xiong J J, Zhou Z Y, Ye X Y, et al. A colloid microthruster system [ J ]. Microelectronic Engineering, 2002, 61-62:1 031-1 037.
  • 5尤政,张高飞.基于MEMS的微推进系统的研究现状与展望[J].微细加工技术,2004(1):1-8. 被引量:18
  • 6Bayt R L. Analysis, fabrication and testing of MEMS- based micropropulsion system [D]. Cambridge, MA, USA: Massachusetts Institute of Technology, 1999.
  • 7Hitt R L, Zakrzwski C M, Thomas M A. MEMS- based satellite micropropulsion via catalyzed hydrogen peroxide decomposition [J]. Smart Mater Struck, 2001, 10:1 163-1 375.
  • 8Connaire M O, Curran H J, Simmie J M, et al. A comprehensive modeling study of hydrogen oxidation [J]. International Journal of Chemical Kinetics, 2004, 36 : 603-622.
  • 9林博颖,张根烜,刘明侯,陈义良.微小空腔内气体的预混燃烧[J].燃烧科学与技术,2007,13(3):269-274. 被引量:4

二级参考文献24

  • 1王光润,Prof Eigenberger G.甲烷催化燃烧的实验研究[J].化学反应工程与工艺,1997,13(1):94-97. 被引量:2
  • 2Ye X Y, Tang F, Ding H Q, et al. Study of a vaporizing water micro-thruster[ J ]. Sensors and Actuators A:Physical,2001,89( 1 -2) :159 - 165.
  • 3Maurice Martin,Howard Schlossberg,Joe Mitola, et al. University nanosatellite program[A]. IAF Symposium[C]. Redondo Beach(USA) :IAF,1999.
  • 4Pranajaya F,Cappelli M. Progress on Colloid Micro-thruster Research and Flight Testing[R]. USA:Stanford University,2000.
  • 5David H,Siegfried W, Ronald B,et al. Digital micropropulsion[J]. Sensors and Actuators A:Physical,2000,80(2) :143 - 154.
  • 6Daniel W Youngner,Son Thai Lu,Edgar Choueiri,et al. MEMS mega-pixel micro-thruster arrays for small satellite station keeping[ A]. 14thAnnual/USU Conference on Small Satellites[ C]. Logan(USA) :AIAA,2000.
  • 7Rachel Leach,Kerry L Neal. Discussion of micro-Newton thruster requirements for a drag-free control system[ A]. 16th Annual/USU Conference on Small Satellites[ C]. Logan(USA) :AIAA,2002.
  • 8Fleeter R. Microspacecraft [ M ]. Reston(USA) :The Edge City Press, 1995.
  • 9Juergen Muller, Colleen Marrese,James Polk, et al. An overview of MEMS-based micropropulsion developments at JPL[ J]. Acta Astronautics,2003,52(9 - 12) :881 - 895.
  • 10Dana Teasdale. Solid Propellant Microrockets[ D]. Berkeley:University of California,2000.

共引文献20

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部