期刊文献+

CuH^n(n=0,+1,+2)分子及离子的势能函数与垂直电离势(英文)

Potentional energy function and vertical ionization potential of CuH^n(n=,+1,+2)
下载PDF
导出
摘要 为了弄清CuH在镁基合金储氢材料中运用,首先需了解CuHn(n=0、+1、+2)分子及离子体系势能函数和稳定性的信息,本工作用原子分子反应静力学原理推导出了CuHn(n=0、+1、+2)的基态电子状态及其离解极限.基于SDD和6-311G**基组,用B3PW91方法计算了他们的平衡几何、电子状态,在此基础上分别计算了CuH,CuH+1的Murrell-Sorbie解析势能函数和CuH+2的解析势能函数及其对应的力常数、光谱参数.CuHn(n=+1,+2)离子的垂直电离势为:I+=-965.00eV,I++=-944.70eV.计算表明CuH+、CuH2+的势能曲线均具有对应于稳定平衡结构的极小点,说明CuH+、CuH2+可稳定存在. Based on the Atomic and Molecular Reaction Statics, the ground electronic states i. e. Cull (X^∑^+), Cull+ (X^2∑^+) and CuH^2+ (X^3∑^+) and the corresponding reasonable dissociative limits for these molecule and ions have been derived. Using density functional method (B3PW91)and SDD basis sets , the molecular equilibrium geometry and dissociation energy for CuH^+ (X^2∑^+ ) and CuH^2+ (X^3∑^+ ) have been calculated. The analytical potential energy functions of CuH^+ and its ions CuH^2 + and CuH^2+ are correctly determined. The force fields and spectroscopic have been worked out from their analytical potential energy functions parameters of CuH^+ (X^2∑^+ ) and CuH^2+ (X^3∑^+ ). The vertical ionization potential of Cull are I^+ = - 965.00 eV and I ^++ = - 944.70 eV. It is indicated from calculation that there are the minimum points in the potential energy curves of CuH^+ and CuH^2+, so we can decide CuH and CuH^+ can be stable. Because of unstable repulsion, so CuH^2 + is a bit stable.
出处 《原子与分子物理学报》 CAS CSCD 北大核心 2008年第1期79-85,共7页 Journal of Atomic and Molecular Physics
基金 四川省应用基础项目
关键词 CuHn(n=0、+1、+2) 分子离子 势能函数 垂直电离 CuH^n(n =0, + 1 +2), molecular ions, potential energy function, vertical ionization potential
  • 相关文献

参考文献2

二级参考文献11

  • 1Drowart J and Honig R E 1956 Chem. Phys. 25 581
  • 2Drowart J and Honig R E 1957 Phys. Chem. 61 980
  • 3Schissel P 1957 Chem. Phys. 26 1276
  • 4Ackerman M, Stafford F E and Drowart J 1960 Chem. Phys. 133 1784
  • 5Hilpert K 1979 Phys. Chem. 83 161
  • 6Gingerich K A ,Shim I, Gupta S K and Kingcade J E 1985 Jr.Surf.Sci. 156 495
  • 7Delley B, Ellis D E and Freeman A J 1983 Phys. Rev. B 27 2132
  • 8Calaminic P, Kster A M and Vela A of 2000 Chem.Phys. 113 2199
  • 9Li Q et al 2001 Chin.Phys. 10 501
  • 10Wang H Y and Zhu Z H 2003 Chin. Phys. 12 154

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部