摘要
本文讨论了如下奇异积分算子:Tf(x)=P.V.∫Rnf(xP(y))K(y)dy,其中P(y)=(p1(y),p2(y),…,pn(y)),K(y)=Ω(y)‖y‖n,∫Sn1Ω(y)dσ(y)=0.对满足一定条件的P和Ω∈Lq(Sn1)(q>1)。
In this paper, we consider the following singular integrals: Tf(x)= P. V. ∫ R n f(x P(y))K(y)dy, where P(y)= γ 1(‖y‖)H 1(y), γ 2(‖y‖)H 2(y), …,γ n(‖y‖)H n(y)), K(y)= Ω(y)‖y‖ n and∫ S n 1 Ω(y)dσ(y)=0. When γ(t)= (γ 1(t), γ 2(t), …,γ n (t)) is highly monotone curve or approximately homogeneous curve and Ω∈L q(S n 1 ) (q> 1), we prove that both T and its maximaloperator T * are bounded on L p(R n), p>1 .
出处
《数学进展》
CSCD
北大核心
1997年第3期211-216,共6页
Advances in Mathematics(China)