期刊文献+

一类时间分数阶传输线模型及仿真分析 被引量:2

A Time-Fractional Transmission Line Model and Its Simulation
下载PDF
导出
摘要 针对传输线电压、电流波的传播特点,采用推广的时间分数阶传输线方程来描述传输线上电压、电流波的反常扩散过程;并应用分数阶Adomian分解方法对时间分数阶传输线方程进行瞬态分析,最后给出了无损传输线传输过程的仿真实例.仿真结果表明,引入时间分数阶导数的无损传输线模型能很好地描述无损传输线上电压、电流波的传播和扩散过程的瞬态特点,对于传输线的瞬态分析具有一定的实际意义,与常用的分数阶Laplace算法等相比,提出的求解算法具有仿真时间短、数据量较少和计算简单等特点. In view of the fluctuating propagation of voltage/current wave in transmission line, a generalized time-fractional equation is used for transmission line to express the abnormal diffusion process of the voltage/current wave. Introducing the Adomian decomposition method, transient analysis is made to the generalized equation with a simulation done as instance for lossless transmission line. Simulation results showed that introducing the derivative of the time-fractional equation into the lossless transmission line model is available to express well the transient characteristics of the propagation/diffusion process of voltage/current wave in such a line, and it is of practical importance to the transient analysis of transmission line. In comparison with the conventional fractional Laplace algorithm, the method proposed is shorter in simulating time, and simpler in computation with less data required.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第2期170-173,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(60475036)
关键词 分数阶微积分 时间分数阶 Adomian分解 Caputo分数阶微分 无损传输线 fractional calculus time-fractional Adomian decomposition Caputo fractional differential lossless transmission line
  • 相关文献

参考文献10

  • 1Miller K, Ross B. An introduction to the fractional calculus and fractional differential[M]. New York: Wiley, 1993.
  • 2Podlubny I. Fractional differential equations [ M ]. New York: Academic Press, 1999.
  • 3Moustafa O L. On the Cauchy problem for some fractional order partial differential equations [ J ]. Chaos, Solitons and Fractals, 2003,18:135 - 140.
  • 4Divila M, Naredo J L, Moreno P, et al. Practical implementation of a transmission line model for transient analysis considering corona and skin effects [C] ///Power Tech Conference Proceedings. New York: IEEE, 2003 : 6 -11.
  • 5Agrawal O P. Solution for a fractional diffusion-wave equation defined in a bounded domain [ J ]. Nonlinear Dynamy, 2002,29:145 - 155.
  • 6Lynch V E, Carreras B A, del-Castillo-Negrete D, et al. Numerical methods for the solution of partial differential equations of fractional order[J].Journal of Computational Physics, 2003,192:406 -421.
  • 7Liang J, Chen Y, Fullmer R. Boundary stabilization and disturbance rejection for time fractional order diffusion-wave equation[J ]. Nonlinear Dynamy, 2004,38 : 155 - 163.
  • 8Meerschaert M M, Tadjeran C. Finite difference approximations for two-sided space-fractional partial differential equations [ J ]. Applied Numerical Mathematics, 2006,56:80 - 90.
  • 9Adomian G. A review of the decomposition method in applied mathematics[J ]. Math Analysis Application, 1988, 135: 501 - 544.
  • 10Adomian G. Solving frontier problems of physics: the decomposition method [ M ]. Boston: Kluwer Academic Publishers, 1994:1-50.

同被引文献17

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部