期刊文献+

基于小波神经网络的抽油杆缺陷识别 被引量:4

Recognition Based on Wavelet Neural Network for Sucker Rod's Defects
下载PDF
导出
摘要 为了正确识别深井泵抽油系统中抽油杆杆体的缺陷以减少油杆井下断裂等事故的发生,讨论了应用小波变换和神经网络技术进行缺陷识别的方法.使用小波与神经网络松散型结合的方法,基于小波包原理,将抽油杆的时域检测信号分解到独立的频带内,应用自适应学习速率梯度下降动量法的BP网络,将提取的频带能量作为神经网络输入,抽油杆的裂纹、腐蚀坑、偏磨、损伤及无缺陷作为神经网络待识别输出.经过实验室大量的实验数据训练和验证,结果表明,此种方法既可以正确识别抽油杆的单一缺陷,也可以识别混合缺陷. Sucker rod is an integral part of the oil well pumping. To reduce the rupture possibility of the rod, it is important to recognize correctly its defects. Discusses the way to recognize the defects by using wavelet transform in combination with neural network. Based on the principle of wavelet package, the signals in time domain detection are decomposed and enter into every frequency band within which the energy is extracted as an input to BP neural network by the momentum-range method for adaptive learning speed gradient descent, then the output reveals the sucker rod's defects including crack, corrosion pits, partial wear, impairments and indefectible rod. Testing results with lots of data acquired in lab showed that the way to recognize the defects of sucker rod involves both the single and mixed defects.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第2期258-261,共4页 Journal of Northeastern University(Natural Science)
基金 教育部高等学校博士学科点专项科研基金资助项目(20050145027)
关键词 小波变换 小波包 神经网络 缺陷识别 抽油杆 wavelet transform wavelet package neural network defect recognition sucker rod
  • 相关文献

参考文献8

  • 1Wang W J, McFadden P D. Application of wavelets to gearbox vibration signals for fault detection [J ]. Journal of Sound and Vibration, 1996,192 (5) :927 - 939.
  • 2郭亚军,张士昌.基于小波神经网络矿山安全的评价模型[J].东北大学学报(自然科学版),2006,27(6):702-705. 被引量:16
  • 3Liu Q P, Yu X L, Feng Q K. Fault diagnosis using wavelet neural networks[ J ]. Neural Processing Letters, 2003,18 (2) : 115 - 124.
  • 4Nikolaou N G, Antoniadis I A. Rolling element bearing fault diagnosis using wavelet packet[J]. NDT & E International, 2002,35(3) : 197 - 205.
  • 5Lin J, Qu L. Feature extraction based on Morlet wavelet and its application for mechanical fault diagnosis [ J ]. Journal of Sound and Vibration, 2000,234(1 ) : 135 - 148.
  • 6Forster F. New findings in the field of nondestructive magnetic leakage field inspection [J ]. NDT International, 1986, 19 (1):3-14.
  • 7Owston C N. The magnetic flux leakage technique of NDT [J]. British Journal of NDT, 1997,20(11 ) : 162 - 168.
  • 8Basher I A, Hajmeer M. Artificial neural network fundamentals, computing, design and application [ J ]. Journal of Microbiological Methods, 2000,43(3) :3 -31.

二级参考文献13

共引文献15

同被引文献41

  • 1冯伟光,沈小艳.小波变换在图像压缩中的应用[J].大连海事大学学报,2005,31(3):83-86. 被引量:4
  • 2杜福洲,唐晓青,孙静.MEWMA控制图ARL计算及参数优化[J].北京航空航天大学学报,2006,32(8):974-978. 被引量:5
  • 3杜世昌,奚立峰,潘尔顺.串并联混合式多阶段制造系统产品质量建模与控制[J].计算机集成制造系统,2006,12(7):1068-1073. 被引量:10
  • 4杜福洲,孙静,唐晓青.基于Markov链的MCUSUM控制图链长分析[J].清华大学学报(自然科学版),2007,47(2):169-172. 被引量:3
  • 5Arivazhagan S, Ganesan L. Texture classification using wavelet transform[J]. Pattern Recognition Letters, 2003, 24(10):1513 - 1521.
  • 6Wang X C, Paliwal K K. Feature extraction and dimensionality reduction algorithms and their applications in vowel recognition [ J ]. Pattern Recognition, 2003, 36 (9/ 10) :2429 - 2439.
  • 7Zhang H, Cartwright C M, Ding M S. Image feature extraction with various wavelet functions in a photorefractive joint transform correlator[J]. Optics Communications, 2000,185(4/5/6) :277 - 284.
  • 8Nikolaou N G, Antoniadis I A. Rolling element bearing fault diagnosis using wavelet packet[J]. NDT&E International,2002,35(3):197 -205.
  • 9Forster F. New findings in the field of nondestructive magnetic leakage field inspection[J]. NDT International, 1986,19(1):3 -14.
  • 10Robert S, Stanislaw O. Accurate fault location in the power transmission line using support vector machine approach[J]. IEEE Transactions on Power System, 2004, 19 (2) : 979 - 986.

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部