期刊文献+

基于定向爬山的遗传算法 被引量:4

Oriented hill-climbing based genetic algorithm
下载PDF
导出
摘要 爬山法是一种局部搜索能力相当好的算法,主要是因为它是通过个体的优劣信息来引导搜索的。而传统的遗传算法作为一种全局搜索算法,在搜索过程中却没有考虑个体间的信息,而仅依靠个体适应度来引导搜索,使得算法的收敛性受到限制。将定向爬山机制应用于遗传算法,提出了一种基于定向爬山的遗传算法(OHCGA)。该算法结合了爬山法与遗传算法的优点,通过比较个体的优劣,使用定向爬山操作引导算法向更优秀的解区域进行搜索。实验结果表明,与传统遗传算法(TGA)相比,OHCGA较大地提高了算法的收敛速度和搜索最优解的能力。 The hill-climbing method is a local search algorithm,which has a good local search performance mainly because its seareh process is guided by information between individuals.In contrast,Traditional Genetic Algorithm (TGA) is a global search algorithm,which does not consider information between individuals in the search process.The convergence of TGA is limited because it only uses individuals' fitness to guide the search.This paper proposes a new algorithm in which oriented hill-climbing mechanism is added to genetic algorithm.The new algorithm is named Oriented Hill-Climbing based Genetie Algorithm(OHCGA) which combines merits of hill-climbing method and TGA.Through the comparison of individuals,the algorithm uses the oriented hill-climbing operator to guide search to promising areas.Numerical experiments show that OHCGA improves the convergence speed and the ability of search optimal solutions compared with TGA.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第6期92-95,106,共5页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of Chinaunder Grant No.60773047) 国家高技术研究发展计划(863)(the National High-Tech Researchand Development Plan of Chinaunder Grant No.2001AA114060) 教育部留学回国人员科研启动基金(The Project-sponsored by SRF for ROCS SEM No.教外司留[2005]546号) 湖南省自然科学基金(the Natural Science Foundation of Hunan Province of Chinaunder Grant No.05JJ30125) 湖南省教育厅重点科研项目(No.06A074)。
关键词 遗传算法 定向爬山 收敛性 最优解 引导搜索 genetic algorithm oriented hill-climbing convergence optimal solutions guide search
  • 相关文献

参考文献19

  • 1Holland J H.Adaptation in natural and artificial systems[M].Ann Arbor:Univ of Michigan Press, 1975.
  • 2Melanie M.An introduction to genetic algorithms[M].Cambridge:MIT Press, 1999.
  • 3Houck C R,Joines J A.A genetic algorithm for function optimization:a MATLAB implementation,NC-SU-IE-TR95-09[R],1995.
  • 4Pan Z,Kang L.An adaptive evolutionary algorithm for numerical optimization[C]//First Asia-Pacific Conference on Simulated Evolution and Learning,SEAL 96.Taejon:Springer, 1996:27-34.
  • 5Petridis V,Kazarlis S,Bakirtzis A.Varying fitness function in genetic algorithms constrained optimization:the cutting stock and unit commitment problems[J].IEEE Transaction on SMC Part B:Cybernetics ( S 1083-4419 ), 1998,28 ( 5 ) : 629-639.
  • 6Shaunna M,Tom L,Abdulla H.A genetic algorithm environment for star pattern recognition[J].Journal of Intelligent and Fuzzy Systems (S1046-1246), 1998,6( 1 ):3-16.
  • 7Bhandarkar S M,Zhang H.Image segment using evolutionary computation[J].IEEE Transactions and Evolutionary Computation(S1089-778X), 1999,3( 1 ): 1-21.
  • 8Karr C L.Gentry E J.Fuzzy control of pH using genetic algorithms[J]. IEEE Transactions on Fuzzy Systems, 1993,1(1):46-53.
  • 9Esparcia-Alcazar A I,Sharman K C.Genetic programming techniques that evolve recurrent neural network architectures for signal processing[C]//Proceedings of the 1996 IEEE Signal Processing Society Workshop,Six in a Series of Workshops Organized by the IEEE Signal Processing Society Neural Networks Technical Committee, 1996: 130-139.
  • 10Goldberg D E.Genetic algorithms in search,optimization,and machine learning,reading[M].MA:Addison Wisely, 1989.

二级参考文献17

  • 1张晓缋,方浩,戴冠中.遗传算法的编码机制研究[J].信息与控制,1997,26(2):134-139. 被引量:93
  • 2J Holland. Adaptation in Natural and Artificial Systems [M]. MIT Press, Cambridge, MA, 1992.
  • 3M Gen, R Cheng. Genetic Algorithms and Engineering Optimization[M]. John Wiley & Sons, New York, 2000.
  • 4L Eshelman, J Schaffer, Real-coded genetic algorithms and interval-schemata, in L. Whitley, editor, Foundations of Genetic Algorithms [M]. Morgan Kaufmann Publishers, San Francisco, 1993,2: 187-202.
  • 5Michalewicz Z, Janikow C Z, Krawczyk J B. A modified genetic algorithm for optimal control problems [J]. Computers Math Applic(S0886-9561). 1992, 23(12): 83-94.
  • 6Bessaou M, Slarry P. A Genetic Algorithm with Realvalue Coding to Optimize Multimodal Continuous Functions[J]. Structure Multitask Optimization, 2001,23(1):63-74.
  • 7Blanco A, Delgado M, Pegalajar M C. A Real Coded Genetic Algorithm for Training Recurrent Neural Networks[J]. Neural Networks, 2001,14 (1) :93-105.
  • 8Baskar S, Subberaj P, Rao M V C. Hybrid Real Coded Genetic Algorithm Solution to Economic Dispatch Problem [J]. Computers and Electrical Engineering,2003,29(3):407-419.
  • 9Tsutsui S, Goldberg D E. Search Space Boundary Extension Method in Real Coded Genetic Algorithms[J]. Information Sciences, 2001,133(3) :229-247.
  • 10Goldberg D E. Real Coded Genetic Algorithms, Virtual Alphabets and Blocking[J]. Complex Systems, 1991,5(2):139-167.

共引文献152

同被引文献34

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部