期刊文献+

基于对称差分的背景重构算法 被引量:4

Background reconstruction algorithm based on symmetrical differencing
下载PDF
导出
摘要 针对现有的背景重构算法存在的问题,提出一种新的算法,该算法基于子块操作,利用对称差分重构背景。首先对对称差分算法进行了改进,然后基于对称差分结果进行背景重构。该算法一定程度上利用了相邻像素间的关系,计算简单,不需存储采样图像,且对光照和背景变化可以自适应更新。实验结果表明,该算法能够快速、有效地重构背景图像。 A new background reconstruction algorithm is proposed to overcome the problems in the current algorithms,which is based on sub-blocks and employs symmetrical differencing.First,the original symmetrical differencing is improved.Then,background is reconstructed based on the symmetrical differencing results.This algorithm makes use of the spatial information in part,only need simple computation,and need not store history images.Moreover,it can self-adapt to the changes of illumination and of background.Experimental results indicate the fast and efficient performance of the algorithm in background reconstruction.
作者 赵瑶 常发亮
出处 《计算机工程与应用》 CSCD 北大核心 2008年第6期104-106,共3页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of Chinaunder Grant No.60104009) 山东省自然科学基金(the Natural Science Foundation of Shandong Province of Chinaunder Grant No.Z2005G03)。
关键词 对称差分 背景重构 子块 symmetrical differencing background reconstruction sub-block
  • 相关文献

参考文献8

  • 1Cucchiara R,Piccardi M,Prati A.Detecting moving objects,ghosts, and shadows in video streams[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2003,25(10) : 1337-1342.
  • 2Haritaoglu I,Harwood D,Davis L S.W4:real-time surveillance of people and their activities[J].IEEE Trans on Pattern Analysis and Machine Intelligence, 2000,22(8) : 809-830.
  • 3Ridder C,Munkelt O,Kirchner H.Adaptive background estimation and foreground detection using Kalman-fihering[C]//Proc of the Int'l Conf on Recent Advances in Mechatronics,Istanbul,Turkey,1995: 193-199.
  • 4Elgammal A,Harwood D,Davis L S.Non-parametric model for background subtraction[C]//Proc of the 6th European Conf on Computer Vision, Dublin, Ireland, 2000: 751-767.
  • 5Stauffer C,Grimson W E L.Adaptive background mixture models for real-time tracking[C]//Proc of IEEE Computer Society Conf on Computer Vision and Pattern Recognition,Fort Collins,CO,USA, 1999,2 : 246-252.
  • 6Stenger B, Ramesh V,Paragios N,et al.Topology free hidden markov models:application to background modeling[C]//Proc of 8th IEEE International Conference on Computer Vision,Vancouver, BC,Canada, 2001,1:294-301.
  • 7Han B,Comaniciu D,Davis L.Sequential kernel density approximation through mode propagation: applications to background modeling[C]//Proc of Asian Conf on Computer Vision,Jeju Island,Korea, 2004.
  • 8潘建寿,王琳,王宾,崔宇巍,张永宜.一种基于分级分块处理的背景估计算法[J].光子学报,2005,34(12):1897-1900. 被引量:12

二级参考文献8

共引文献11

同被引文献43

  • 1潘建寿,王琳,王宾,崔宇巍,张永宜.一种基于分级分块处理的背景估计算法[J].光子学报,2005,34(12):1897-1900. 被引量:12
  • 2陈敏.一种自动识别最优阈值的图像分割方法[J].计算机应用与软件,2006,23(4):85-86. 被引量:31
  • 3齐丽娜,张博,王战凯.最大类间方差法在图像处理中的应用[J].无线电工程,2006,36(7):25-26. 被引量:121
  • 4Lipton A, Fujiyoshi H, Patil R. Moving target classification and tracking from real-time video. Proc IEEE Workshop on Applications of Computer Vision, Princeton, NJ, 1998:8 - 14.
  • 5Anderson C, Bert P, Vander Wal G. Change detection and tracking using pyramids transformation techniques Proc SPIE Conference on Intelligent Robots and Computer Vision, Cambridge, MA, 1985,579:72 - 78.
  • 6Meyer D, Denzler J, Niemann H. Model-based extraction of articulated objects in image sequences for gait analysis. Proc IEEE International Conference on Image Processing, Santa Barbara, California 1997:78 - 81.
  • 7Barton J, Fleet D, Beauchemin S. Performance of optical flow techniques. International Journal of Computer Vision, 1994,12(1):42 - 77.
  • 8Verri A, Uras S, DeMicheli E. Motion Segmentation from optical flow. Proc the 5th Alvey Vision Conference, Brighton, UK, 1989:209 - 214.
  • 9Haritaoglu I, Harwood D, Davis L. W4: real-time surveillance of people and their activities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22 (8):809 - 830.
  • 10Karmann K, Brandt A. Moving object recognition using an adaptive background memory. VCappellini, Time- varying Image Processing and Moving Object Recognition. 2. Elsevier, Amsterdam, The Netherlands, 1990.

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部