期刊文献+

基于模型的不等间隔时间序列聚类算法研究 被引量:2

Model-based clustering algorithm for time-series with irregular interval
下载PDF
导出
摘要 现有的聚类算法一般只能处理以固定间隔表示的数据类型,而忽略了时间轴的变化。基于倒谱距离测度和自回归条件持续期(ACD)模型的聚类方法综合了计量模型的参数估计和聚类的非参无监督分类的优点,是一种适合处理不等间隔时间序列的技术。实验结果证明这种方法是有效的,从中得出的结论与市场微观结构理论也是相吻合的。 Most existing clustering methods can only work with fixed-interval representations of data,ignoring the variance of time axis.A model-based clustering approach using cepstrum distance metrics and Autoregressive Conditional Duration (ACD) model is proposed, it integrates the merits of parametric econometrics and non-parametric clustering,and is fit for time series with irregular interval.Experimental results show that this method is generally effective in clustering irregular space time series,and conclusion inferred from experiment results is agree with the market microstructure theories.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第6期166-168,共3页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of Chinaunder Grant No.70601021) 天津大学管理学院青年基金。
关键词 聚类 不等间隔 自回归条件持续期 距离测度 clustering irregular interval autoregressive conditional duration metric of distance
  • 相关文献

参考文献5

  • 1胡必鑫,肖晓玲,李新玉.基于小波多尺度特征的图像聚类检索[J].微计算机应用,2006,27(5):527-529. 被引量:2
  • 2Kalpakis K,Gada D,Distance measures for effective clustering of arima timeseries[C]//Proceedings of the 2001 IEEE International Conference on Data Mining,San Jose,CA, 2001 : 273-280.
  • 3Engle R,Russell J.Autoregressive conditional duration:a new model for irregularly spaced data[R]. University of California, San Diego, 1995.
  • 4Russell J, Engle R.Econometric analysis of discrete valued,irregular spaced financial transactions data[R].University of Chicago,Graduate School of Business,2002.
  • 5O' Hara, Maureen.Market microstructure theory[M].[S.l.] : Blackwell Publishers, 1995.

二级参考文献3

  • 1ISO/IEC JTC 1/SC 29/WG 1 N1646R,JPEG 2000 Image Coding System,JPEG 2000 Part Ⅰ Final Committee Draft Version 1.0,Date:16 March 2000
  • 2J.MacQueen.Some methods for classification and analysis of multivariate observations.Proceeding of the 5th Berkeley Symposium-1,1967,281~297
  • 3I.Daubechies,Orthonormal Bases of Compactly Supported Wavelets,Comm.Pure Appl.Math.,Vol.41,1988,906~996

共引文献1

同被引文献35

  • 1吴江琴,高文.时间序列聚类算法及其在手势识别中的应用[J].模式识别与人工智能,2005,18(1):1-5. 被引量:4
  • 2詹艳艳,徐荣聪,陈晓云.基于斜率提取边缘点的时间序列分段线性表示方法[J].计算机科学,2006,33(11):139-142. 被引量:46
  • 3杜奕,卢德唐,李道伦,查文舒.基于层次聚类的时间序列在线划分算法[J].模式识别与人工智能,2007,20(3):415-420. 被引量:8
  • 4Hanlon B,Forbes C.Model selection criteria for segmented time series from a Bayesian approach to information compression[R]. Monash University,2002.
  • 5Hawkins D M.Fitting multiple change-point models to data[J]. Computational Statistic & Data Analysis,2008,37(3):323-341.
  • 6Keogh E,Kasetty S.On the need for time series data mining benchmarks:A survey and empirical demonstration[C]. Edmonton, Alberta,Canada:Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2002:102-111.
  • 7Geetika Tewari,John Snyder, Pedro V Sander, et al.signal-specialized parameterization for piecewise linear reconstruction [C]. Eurographics Symposium on Geometry Processing,2004:39-52.
  • 8Keogh E,Chakrabarti K,Pazzani M J,et al.Dimensionality reduction for fast similarity search in large time series databases[J]. Knowledge and Information Systems,2008,3(3):263-286.
  • 9YiB K, Faloustsos C.Fast time sequence indexing for arbitrary Lp norms [C]. Proceeding of the 26tb International Conference on Very Large Databases. San Francisco: Morgan Kantmann Publishers Inc,2002:385-394.
  • 10Lavrenko V, Schmill M,Lawrie D,et al.Mining of concurrent text and time series [C]. Boston, MA: Proceedings of the 6th ACM SIGKDD Int'l Conference on Knowledge Discovery and Data Mining Workshop on Text Mining,2002:37-44.

引证文献2

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部