期刊文献+

基于分类回归树CART的汉语韵律短语边界识别 被引量:3

Identification of Chinese prosodic phrase based on CART
下载PDF
导出
摘要 提出了一种基于分类回归树(Classification And Regression Tree,CART)的汉语韵律短语识别方法。该方法从语音流中提取与韵律短语边界有关的声学特征,从文本中提取短语边界的语言学特征,并将两类特征有机结合构成CART特征集,建立CART决策模型。开放测试结果显示,利用该CART模型在词边界中识别韵律短语边界,其识别准确率平均可达95.91%。 This paper presents a CART-based method for identifying the Chinese prosodic phrase.Firstly,it obtains acoustic characteristics which have relation to the boundary of prosodic phrase from speech,and it gain linguistic characteristics of prosodic phrase boundary from text.Secondly,it combines these characteristics effectively to construct characteristic muster,and then use it to build CART model.The results of opening test show that identifying the boundary of Chinese prosodic phrase using this CART model,its precision can reach 95.91% averagely.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第6期169-171,共3页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of Chinaunder Grant No.60572159,No.60573184)。
关键词 分类回归树 决策树 韵律短语 边界 CART decision tree prosodic phrase boundary
  • 相关文献

参考文献10

二级参考文献54

  • 1沈炯.汉语语调模型刍议[J].语文研究,1992(4):16-24. 被引量:78
  • 2李剑锋,胡国平,王仁华.基于最大熵模型的韵律短语边界预测[J].中文信息学报,2004,18(5):56-63. 被引量:20
  • 3林茂灿.普通话语句中间断和语句韵律短语[J].当代语言学,2000,2(4):210-217. 被引量:31
  • 4王洪君.汉语的韵律词与韵律短语[J].中国语文,2000(6):525-536. 被引量:101
  • 5Niu Zhengyu, Chai Peiqi. Segmentation of Prosodic Phrase for Improving the Naturalness of Synthesized Chinese Speech. In The Proceedings of ICSLP'2000, III. 350-353.
  • 6Jianfen Cao & Wdbin Zhu. Syntactic and Lexical Constraint in Prosodic Segmentation and Grouping. In The Proceedings. of Speech Prosody2002.
  • 7Zheng, B., Wang, B., Yang, Y., Lu, S. & Cao, J.. The regular accent in Chinese sentences. In The Proceedings of ICSLP'2000, I, 86-89.
  • 8Selkirk E. The role of prosodic categories in English word stress. Linguistic Inquiry, 1980; 11:563-605.
  • 9Nespor M, Vogel I. Prosodic phonology. Foris, Dordrecht,Holland: 1983.
  • 10Beckman M, Pierrehumbert J. Intonational structure in Japanese and English. Phonology Yearbook 3, edited by J Ohala, 1986:255-309.

共引文献138

同被引文献26

  • 1孔颖,裘彬强,徐从富.基于CART算法的垃圾邮件过滤模型设计与实现[J].计算机应用,2009,29(2):374-376. 被引量:4
  • 2李泓馨,张选棉,高天文.“皮肤CT”——皮肤病诊断的新手段[J].中国皮肤性病学杂志,2007,21(7):432-434. 被引量:13
  • 3张松林.CART-分类与回归树方法介绍[J].火山地质与矿产,1997,18(1):67-75. 被引量:23
  • 4黄文.决策树的经典算法:ID3与C4.5[J].四川文理学院学报,2007,17(5):16-18. 被引量:30
  • 5WILTGEN M, GERGER A, SMOLLE J. Tissue counter analysis of benign common nevi and malignant melanoma [ J ]. International Journal of Medical Informatics, 2003,69 ( 1 ) :17-28.
  • 6GAREAU D, HENNESSY R, WAN E, et al. Automated detection of malignant features in confocal microscopy on superficial spreading melanoma versus nevi[ J ]. Journal of Biomedical Optics,2010,15 (6) :1-10.
  • 7ZHANG Hong, ZHANG Xuan-bing. Texture feature extraction based on wavel, et transform[ C ]//Proc of International Conference on Computer Application and System Modeling. 2010 : 146-149.
  • 8WILTGEN M, GERGER A, WAGNER C, et al. Evaluation of texture features in spatial domain for automatic discrimination of histologic tissue[ J]. Anal Quant Cytol Histo1,2007,29 (4) : 141-149.
  • 9Gareau D,Hennessy R,Wan E. Automated detection of malignant features in confocal microscopy on superficial spreading melanoma versus nevi[J].{H}Journal of Biomedical Optics,2010,(06):061713.
  • 10Wiltgen M,Gerger A,Smolle J. Tissue counter analysis of benign common nevi and malignant melanoma[J].{H}INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS,2003,(01):17-28.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部