期刊文献+

基于流形学习的单字符字体辨别 被引量:1

Type identification of single character based on manifold learning
下载PDF
导出
摘要 文字种类识别及字体辨别已成为继印刷体文字识别以后新的国内外研究的热点,关于单字的手写体和印刷体辨别的研究不多,但在表单中却极为常用。对于字体辨别问题,引入流形学习算法局部线性嵌套(LLE),假定数据为存在于嵌入高维空间的一个低维流形。提出了用于单字字体辨别的LLE泛化方法及邻域和内在维数的参数估计方法,基于印刷体/手写体汉字字符及数字的辨别实验表明,其性能优于直接支持向量机(SVM)分类,且经过LLE降维后的数据直接用线性判别分析方法(LDA)分类可以获得与LLE计算后SVM分类相近甚至更高的正确率和更快的分类速度。 The identification of language and character type has been an active area of research after recognition of machine printed text.Research on identification of handwritten text and printed text is seldom conducted.But it is common used in recognition of form.For character type identification,manifold learning algorithm Locally Linear Embedding (LLE) is imported.A generalizing method and a parameters estimation method are proposed.Experiments in identification printed/handwritten Chinese characters and digits show that its performance is higher than Support Vector Machine (SVM) classification.The combination of dimensionality reduction of LLE and Linear Discriminant Analysis (LDA) classification achieves a similar accurate rate as or higher than the combination of LLE and SVM classification but runs much faster than it.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第6期206-209,共4页 Computer Engineering and Applications
基金 湖北省重点新产品计划资助项目(No.2003BDST004)。
关键词 字体辨别 流形学习 局部缌胜嵌入(LLE) 参数估计 identification of character type manifold learning Locally Linear Embedding(LLE ) parameter estimation
  • 相关文献

参考文献8

  • 1陈力,丁晓青.基于小波特征的单字符汉字字体识别[J].电子学报,2004,32(2):177-180. 被引量:11
  • 2Ma J K.Guo M Y.Separating handwritten material from machine printed text using hidden Markov models[C]//Proceedings of International Conference on Document Analysis and Recognition,2001: 439-443.
  • 3Kuhn ke K,Simoncini L,Kovacs-V Z M.A system for machinewritten and hand-written character distinction[C]//Proceedings of International Conference on Document Analysis and Recognition, 1995 : 811-814.
  • 4Zheng Y,Liu C,Ding X.Single character type identification[C]//Proc SPIE Conf Document Recognition and Retrieval,2002 : 49-56.
  • 5Roweis S T,Saul L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.
  • 6Kouropteva O,Okun O,Hadid A,et al.Beyond locally linear embedding algorithm,MVG-01-2002[R].Machine Vision Group,University of Oulu,2002.
  • 7Polito M,Perona P.Grouping and dimensionality reduction by locally linear embedding[M].[S.l.]:MIT Press,2002.
  • 8Kouropteva O,Okun O,Pietik ainen M.Classification of handwritten digits using supervised locally linear embedding algorithm[C]//11th European Symposium on Artificial Neural Networks (ESANN), Bruges, Belgium, 2003 : 229-234.

二级参考文献8

  • 1[1]H Shi,T Pavlidis.Font recognition and contextual processing for more accurate text recognition [A].ICDAR'97 [C].ULm,Germany:IEEE Computer Society Press,1997.39-44.
  • 2[2]A Zramdini,R Ingold.Optical font recognition using typographical features [J].IEEE Trans,1998,PAMI-20(8):877-882.
  • 3[3]Min-Chul Jung,Yong-Chul Shin,S N Srihari.Multifont classification using typographical attributes [A].ICDAR99 [C].Bangalore,India:IEEE Computer Socety Press,1999.353-356.
  • 4[4]Y Zhu,T Tan.Font recognition based on global texture analysis [J].IEEE Trans,2001,PAMI-23(10):1192-1200.
  • 5[5]S Mallat.A theory for multiresolution signal decomposition:The wavelet representation [J].IEEE Trans,1989,PAMI-11(7):674-693.
  • 6[6]K R Castleman.Digital Image Processing [M].Englewood Cliffs,N J,Prentice Hall,1996.
  • 7[7]R M Sakia.The Box-Cox transformation technique:a review [J].The Statistician-41:169-178.
  • 8[8]F Kimura,K Takashina,et al.Modified quadratic discriminant functions and the application to Chinese character recognition [J].IEEE Trans,1987,PAMI-9(1):149-153.

共引文献10

同被引文献9

  • 1Tenenbaum J B, Silva V de,Langford J C.A global geometric framework for nonlinear dimensionality reduction[J].Science, 2000,290 ( 5500 ) : 2319-2323.
  • 2Roweis S,Lawrence K.Nonlinear dimensionality reduction by lo- cally linear embedding[J].Science,2000,290(5500):2323-2326.
  • 3Belkin M,Niyogi P.Laplacian eigenmaps for dimensionality re- duction and data representation[J].Neural Computation, 2003, 15 (6) : 1373-1396.
  • 4Xiaofei H,Niyogi P.Locality preserving projections[C]//Advances in Neural Information Processing Systems, Vancouver, Canada, 2003,15.
  • 5Yang J, Zhang D, Yang J Y, et al.Globally maximizing, locally minimizing: Unsupervised discriminant projection with applica- tions to face and palm biometrics[C]//PAMI,2007,29(4):650-664.
  • 6Bressan M, Vitri~t J.Nonparametric discriminant analysis and nearest neighbor classification[J].Pattem Recognition Letters, 2003,24 ( 15 ) : 2743-2749.
  • 7Zhu M, Martinez A M.Subclass discriminant analysis[J].IEEE Trans Pattern Analysis and Machine Intelligence,2006,28(8): 1274-1286.
  • 8Yah S C,Xu D,Zhang H J, et aLGraph embedding: a general framework for dimcnsionality reduction[C]//Proceedings of Conf Computer Vision and Pattern Recognition, 2005 : 830-837.
  • 9Liu Xiangyang, Lu Hongtao, Li Wenbin.Multi-manifold modeling for head pose estimation[C]//Proceedings of 2010 IEEE 17th In- ternational Conference on Image Processing, Sela 2010:3277-3280.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部