摘要
我们研究一类带导数记忆项抛物型偏积分微分方程欧拉时间离散,记忆项通过Lubich建议的分数次卷积求积逼近.
The optimal order error estimates are derived for two time discretizations of an integrodifferential equation of parabolic type with a derivative memory term. The methods reduce to the fractional backward Euler. The integral term is approximated by two fractional convolution quadratures suggested by Lubich.
出处
《纯粹数学与应用数学》
CSCD
1997年第1期50-56,共7页
Pure and Applied Mathematics
关键词
积分微分方程
时间离散
欧拉方法
数值解
抛物型
integredifferential equation
time discretization
Euler methods
optimal order
error estimate