摘要
记δn=k≤nkn-k,在本文中证明了:r∈N,若i∈{1,2,…,r},qi(>5)都是素数,并且[(δqi-1-1)!+1]/δqi-1是正整数,则图簇Kn-Ek0P3∪k1Pq1-1∪k2Pq2-1∪…∪krPqr-1是色唯一的。
Let P n denote the path with n vertices and h(P n,x) denote the Adjoint polynomial of P n . Let δ n =h(P n,1)=k≤n k n k. In this paper, I prove P n is irreducible path n=3 or n=q-1 , where q(≥3) is a prime and [(δ q-1 -1)!+1]/δ q-1 is a integer number, and graphs K n Ek 0P 3(∪ri=1k iP q i 1 ) which satisfied some condition is chromatically unique. I improve the results obtained by Lin Ruying and Li Nianzu in .
出处
《纯粹数学与应用数学》
CSCD
1997年第1期61-67,共7页
Pure and Applied Mathematics
基金
国家自然科学基金
关键词
色多项式
伴随多项式
简单图
图
色唯一性
chromatic polynomial
Adjoint polynomial
irreducible path
chromatically unique graph