期刊文献+

基于有序统计和自动删除平均的恒虚警检测器 被引量:3

CFAR detector based on ordered statistics and automatic censoring cell averaging
下载PDF
导出
摘要 为了增强检测器对干扰的鲁棒性,基于有序统计(OS)方法和自动删除单元平均(ACCA)方法提出一种新的恒虚警检测器(MOSAC),其前沿和后沿滑窗分别采用OS和ACCA产生两个局部估计,然后取二者的和作为背景功率水平估计,从而设置自适应检测门限。在Swerling Ⅱ型目标假设下,推导出MOSAC在均匀背景下虚警概率Pfa的解析表达式,并与其它现有方案进行了比较。仿真结果表明MOSAC在均匀背景及多目标和杂波边缘引起的非均匀背景中,均具有较好的检测性能。在杂波边缘引起的非均匀背景中,虚警尖峰比MOSCM减少了一个数量级,并且样本排序时间只有OS和ACCA的1/2。 In order to make the detector perform robustly against interfere background, a new CFAR detector (MOSAC-CFAR) based on ordered statistics(OS) and automatic censoring cell averaging(ACCA) is proposed. It takes the sum of OS and ACCA local estimation as a noise power estimation. Under Swerling Ⅱ assumption, the analytic expression of Pfa in homogeneous background is derived. By comparison with other schemes, the simulation results show that the detection performance of MOSAC is good both in homogeneous environment and in nonhomogeneous environment caused by strong interfering targets and clutter edges, particularly in clutter edges situation, the spike of false alarm rate of MOSAC decreases an order of magnitude than that of MOSCM, while the sample sorting time is only half that of OS and ACCA.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2008年第1期10-13,共4页 Systems Engineering and Electronics
基金 国家自然科学基金资助课题(60472101)
关键词 恒虚警 有序统计 自动删除单元平均 排序数据方差 const false alarm rate ordered statistics automatic censoring cell averaging ordered data variability
  • 相关文献

参考文献6

  • 1Finn H M, Johnson R S. Adaptive detection mode with thresh old control as a function of spatially sampled clutter-level estimates[J]. RCA Review, 1968, 29(9) :414 - 464.
  • 2Rohling H. Radar CFAR thresholding in clutter and multiple target situations[J]. IEEE Trans. on Aerospace and Electronic System, 1983, 19(4) :608-621.
  • 3何友,关键.一种基于排序和平均的新恒虚警检测器[J].现代雷达,1995,17(4):32-36. 被引量:12
  • 4Meng XiangWei, He You. A new CFAR detector based on censored mean and order statistics[C]//Proceeding of IEEE International Conference on Neural Networks and Signal Processing ,Nanjing,1995:1178 - 1181.
  • 5Richard J T, Dillard G M. Adaptive detection algorithms for multiple-Target situations[J]. IEEE Trans. on AES , 1977, 13 (4) :338 -343.
  • 6Farrouki A, Barkat M. Automatic censoring CFAR detector based on ordered data variability for nonhomogeneous environments[C]// IEE Proc. Radar Sonar Navig. , 2005, 152(1 ) : 43 - 51.

二级参考文献2

共引文献11

同被引文献24

  • 1曲超,郝程鹏,杨树元.基于自动删除算法的最大选择恒虚警检测器[J].现代雷达,2008,30(6):68-72. 被引量:4
  • 2胡文琳,王永良,王首勇.一种基于有序统计的鲁棒CFAR检测器[J].电子学报,2007,35(3):530-533. 被引量:17
  • 3De M A, Farina A, Foglia G. Design and experimental validation of knowledge-based constant false alarm rate detectors[J]. IET Rada r, Sonar and Navigation, 2007,1 (4) : 308 - 316.
  • 4Cao T V. Design of low-loss CFAR detectors[C]//Proc, of International Conference on Radar, 2008 : 712 - 717.
  • 5Finn H M. A CFAR design for a window spanning two clutter fields[J]. IEEE Trans. on Aerospace and Electronic Systems, 1986,22(2) :155 - 169.
  • 6Pourmottaghi A, Taban M R, Norouzi Y, et al. A robust CFAR detection with ML estimation [C] // Proc. of IEEE Radar Conference, 2008.
  • 7Gandhi P P, Kassam S A. Analysis of CFAR processors in non- homogeneous background[J].IEEE Trans. on Aerospace and Electronic Systems ,1988,24(4) :427 - 444.
  • 8Himonas S D, Barkat M. Automatic censored CFAR detection for nonhomogeneous environments[J]. IEEE Trans. on Aerospace and Electronic Systems, 1992,28 ( 1 ) :286 - 304.
  • 9Smith M E, Varshney P K. Intelligent CFAR processor based on data variability[J]. IEEE Trans. on Aerospace and Electronic Systems, 2000,36 (3) : 837 - 847.
  • 10ZhangRL, Zou YW, ShengWX, etal. An improvedCFAR detector for non-homogeneous clutter environment[C] //Proc.of the International Symposium on Signals, Systems and Electronics, 2010:594 - 597.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部