期刊文献+

提高PCA识别率的新算法 被引量:3

A new PCA method to increase recognition rate
原文传递
导出
摘要 针对基于主元分析(PCA)的识别算法不能最优区分不同种类样本的缺点,提出了一种新的多主元分析(Multi-PCA)识别算法。该算法为每类样本构造单独特征空间,用各个空间的特征向量重建待识别样本。特征空间是基于某类样本图像的共性建立,因此重建该类样本图像时将得到较小重建误差,而重建其它类图像时的误差较大。可以根据重建误差的大小来识别样本图像,将待识别样本分类到具有最小重建误差的特征空间。在ORL、YALE人脸库和标牌压印字符库上的实验结果显示,Multi-PCA的识别率比PCA有较大提高。 The PCA(Principal component analysis)is not the best method to extract features for recognition because the difference between different kinds is not considered.So a new Multi-PCA method is proposed for recognition application. The feature spaces are established of every kind sample based on the commonness of a specifically kind of samples.Then a new sample to be recognized is reconstructed using features vectors of every feature space and the reconstructed error is calculated.If a sample belongs to a specifically kind then the reconstructed error of this sample will be small and the error will be enlarged if it belongs to another kind.Based on this principle the samples are classified to the space in which the error is the least.Experiments on ORL and YALE faces databases and scutcheon character database show that the method is more accurate than the standard PCA.
出处 《光学技术》 CAS CSCD 北大核心 2008年第1期10-13,16,共5页 Optical Technique
基金 教育部博士点基金资助项目(20060422011)
关键词 主元分析 模式识别 特征提取 特征空间 重建误差 PCA pattern recognition feature extract feature space reconstruct error
  • 相关文献

参考文献13

  • 1董广军,张永生,戴晨光.高分辨率遥感影像融合处理技术的对比分析研究[J].光学技术,2006,32(6):827-830. 被引量:11
  • 2Zhang D Q, Zhou Z H, Chen S C. Diagonal principal component analysis for face recognition [ J ]. Pattern Recognition, 2006, 39 ( 1 ) : 140--142.
  • 3Kirby V I, Sirovieh L. Application of the Karhunen-Loeve procedure for the characterization of human faces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12 ( 1 ): 103--108.
  • 4Turk V L, Pentland A. Eigenfaces for recognition[ J ]. , Journal of Cognitive Neuroscience, 1991, 3(1) :72--86.
  • 5刘青山,卢汉清,马颂德.综述人脸识别中的子空间方法[J].自动化学报,2003,29(6):900-911. 被引量:117
  • 6E奥亚.子空间法模式识别[M].北京:科学出版社,1987.61-92.
  • 7边肇祺 张学工.模式识别[M].北京:清华大学出版社,1999.282-283.
  • 8Samaria F S, Harter A C. Parameterisation of a stochastic model for human face identification [ C ]. Proceedings of the 2nd IEEE Workshop on Applications of Computer Vision, USA: Los Alamitos, 1994.
  • 9Bellhumer P N, Hespanha J, Kriegman D. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection[J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, Special Issue on Face Recognition, 1997,17(7) :711--720.
  • 10路长厚,曹建海,李学勇,李建美.金属标牌中压印凹凸字符质量的在线检测研究[J].机械工程学报,2005,41(2):87-91. 被引量:7

二级参考文献110

共引文献289

同被引文献16

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部