期刊文献+

涂料颜色配方预测的人工神经网络模型实验研究 被引量:2

The research of computer color matching of powder paints using BP neural networks
下载PDF
导出
摘要 人工神经网络技术近年来在颜色空间变换或色域映射的研究中显示了特有的效果。人工神经网络用于粉末涂料配方的预测,其特点是用BP算法神经网络建立粉末涂料反射样品的标准色度参数与配方浓度参数之间的映射关系。通过对典型颜色样本训练和预测,结果表明基于多隐层BP网的模型可以实现粉末涂料样品的配方浓度空间与标准三刺激值颜色空间的相互映射,即用BP网络实现粉末涂料的配方预测。 Using neural networks method to predict the color recipes for powder paints is proposed.The theory of the multi-layer BP neural networks model for the color recipe mapping is introduced,and the experiments for typical powder paints are carried out.The experimental results show that the method is efficient in the recipes mapping.
出处 《光学技术》 CAS CSCD 北大核心 2008年第1期116-119,共4页 Optical Technique
关键词 电脑配色 粉末涂料 BP神经网络 computer color matching paints color BP neural networks
  • 相关文献

参考文献6

二级参考文献16

  • 1刘芳.-[J].机械科学与设计,1997,16(3):557-560.
  • 21,Post D L, Calhoun C S. An evaluation of methods for producing desired colors on CRT.Color Research and Application, 1989,14(4):172~185.
  • 32,Berns R S. Methods for characterizing CRT displays. Displays, 1996,16(4):173~182.
  • 43,Tominaga Shoji. Color control using neural networks and its application. SPIE, 1996,2658:253~260.
  • 54,Tominaga Shoji.Color Notation Conversion By Neural Networks. Color Research and Application, 1993,18(4):253~259.
  • 65,Po-Rong Chang,Chih-Chiang Tai,Bao-Fuh Yeh.Model-referen-ce color reproduction for video system. SPIE, 1994,2170:182~190.
  • 7王敬平,光学技术,1994年,5卷,34页
  • 8Bai F X, Zen H, et al. Color matching in paints using a method of linear programming[J]. Color Research and Application, 1994,19(5):375-378.
  • 91,A.H.Jones:“Optimun Color AnalysisCharacteristics and Matrices fo Color Television Camersa weth ThreeReceptors/,J.SMPTE.77.2(1986)
  • 10廖宁放,石俊生,余鸿飞,王月芳,高稚允.基于神经网络的数字式CRT色度控制方法[J].兵工学报,1998,19(1):46-50. 被引量:4

共引文献20

同被引文献22

  • 1张秉森,刘晓洁.神经网络在计算机配色中的应用[J].印染,2005,31(18):29-31. 被引量:17
  • 2曹一波,谢小鹏.基于最小二乘支持向量机的磨损预测[J].润滑与密封,2007,32(2):138-141. 被引量:20
  • 3李强,于景媛,孙旭东,刘志刚.多孔NiTi合金工艺参数与孔隙关系的神经网络研究[J].材料科学与工艺,2007,15(3):316-318. 被引量:3
  • 4Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods[ M ]. Cambridge: Cambridge University Press, 2000:24 - 46.
  • 5Wu C H, Tzeng G H, Lin R H. A novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression [ J ]. Expert Systems with Applications,2009,36 ( 3 ) :4725 - 4735.
  • 6Fang S F, Wang M P, Qi w H, et al. Hybrid genetic algorithms and support vector regression in forecasting atmospheric corrosion of metallic materials [ J ]. Computational Materials Science, 2008,44 ( 2 ) : 647 - 655.
  • 7Li Q,Yu H,Wang YN.In vivo spectroradiometric evaluation of color matching errors among five shade guides[J].J Oral Rehabil,2009,36(1):65-70.
  • 8Li Q,Wang YN.Comparison of shade matching by visual observation and an intra-oral dental colorimeter[J].J Oral Rehabil,2007,34(11):848-854.
  • 9Wee AG,Monaghan P,Johnston WM.Variation in color between intended matched shade and fabricated shade of dental porcelain[J].J Prosthet Dent,2002,87(6):657-666.
  • 10Kubelka P.New contributions to the optics of intensely light-scattering materials[J].J Opt Soc Am,1948,38:448-457.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部