期刊文献+

改性钛酸锂负极材料的合成及性能 被引量:9

Synthesis and performance of graphite-doping lithium titanate anode material
下载PDF
导出
摘要 研究了一种改性钛酸锂负极材料的合成工艺及其性能,着重考察了烧结温度、烧结时间、石墨微粉掺杂量、原料配比(nLi∶nTi)对产物首次放电比容量和容量保持率的影响,确定了适宜的合成工艺条件。在烧结温度为950℃、烧结时间为14h、石墨微粉掺杂质量分数为5%,nLi∶nTi为0.84的条件下,钛酸锂的首次放电比容量为173.2mAh/g,与其理论值175mAh/g非常接近,100次循环后的容量保持率为92.7%;当倍率为10C时其比容量在157mAh/g左右,约为1C时比容量的94%。 The synthesis and performance of graphite-doping lithium titanate were studied. The influences of the sinter temperature, the sinter duration, the quantity of graphite and the ratio of the precursors (n u : n n) on the initial specific discharge capacity, cycling capacity retention of the sample, and the optimum performance conditions of the synthesis were established. At the sinter temperature of 950℃, the sinter duration of 14 h, the quantity of graphite of 5% and the n u : n n ratio of 0.84, the initial specific discharge capacity of the sample is 173.2 mAh/g, and in good agreement with the theoretical value, and the capacity retention after 100 cycles is 92.7%. When charged-discharged at rate of 10 C, the specific discharge capacity is about 157 mAh/g, which is 90% of the specific discharge capacity at rate of 1 C.
作者 钟志强 岳敏
出处 《电源技术》 CAS CSCD 北大核心 2008年第2期99-101,119,共4页 Chinese Journal of Power Sources
关键词 钛酸锂 石墨掺杂 合成 电化学性能 lithium titanate graphite-doping synthesis electrochemical performance
  • 相关文献

参考文献11

  • 1WANG G X,BRADHURST D H,DOU S X, et aI.Spinel Li[Li1/3Ti5/3]-O4 as an anode material for lithium ion batteries[J]. Power Sources, 1999, 83(12):156-161.
  • 2OHZUKU T, UEDA A, YAMAMOTO N. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells[J].Electrochem Soc, 1995, 142(5): 1431-1435.
  • 3ZAGHIB K, SIMONEAU M, ARMAND M, et al. Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries [J]. Journal of Power Sources, 1999(81/82): 300-305.
  • 4DUPASQUIER A, PLITZ I. GURAL J, et al. Characteristics and performance of 500 F asymmetric hybrid advanced super-capacitor prototypes [J]. Power Sources, 2003, 113: 62-71.
  • 5AMATUCCI G G, BADWAY F, DUPASQUIER A, et al. An asymmetric hybrid nonaqueous energy storage cell [J]. Electrochem Soc, 2001, 148(8): A 930-A 939.
  • 6LADISLAV K, MICHAEL G. Facile synthesis of nanocrystalline Li4Ti5O12 (spinel) exhibiting fast Li insertion [J].Electrochem Solidstate Lett, 2002, 5(2): A 39-A 42.
  • 7OHZUKU T, UEDA A, YAMAMOTO N, et al. Factor affecting the capacity retention of lithium-ion cells[J]. Power Sources, 1995, 54: 99-102.
  • 8JANSEN A N, KAHAIAN A J, KEPLER K D, et al. Development of a high-power lithium-ion battery[J].Power Sources, 1999 (81/82 ):902-905.
  • 9PROSINI P P,MANCINI R, PETRUCCI L,et al. Li4Ti5O12 as anode in all-solid-state, plastic, lithium-ion batteries for low-power applications[J]. Solid State Ionics, 2001, 144:185-192.
  • 10HAO Y J, LAI Q Y, LU J Z, et al. Synthesis and characterization of spinel Li4Ti5O12 anode material by oxalic acid-assisted sol-gel method[J]. Journal of Power Sources, 2006, 158: 1358-1364.

同被引文献106

引证文献9

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部