摘要
用与Hennekemper不同的方法研究了(fk+1)(k)的值分布,将Hennekemper所得的基本不等式推广至小函数情形,得到了如下定理:设f为超越亚纯函数,F=(fk+1)(k),k∈N,φ为非零的小函数,则T(r,f)≤1+2k+14k2+2k-1Nr,1f+4k+24k2+2k-1Nr,1F-φ+S(r,f).
Using a different way from Hennekempers one, this paper researches on the distribution of values of (f k+1 ) (k) and gives the following theorem: Suppose that f(z) is a transcendental meromorphic function, F=(f k+1 ) (k) , k∈N, φ is a nonzero small function, then T(r,f)≤1+2k+14k 2+2k-1Nr,1f+4k+24k 2+2k-1r,1F-φ+S(r,f).
出处
《华中师范大学学报(自然科学版)》
CAS
CSCD
北大核心
1997年第2期133-136,共4页
Journal of Central China Normal University:Natural Sciences
基金
国家自然科学基金