摘要
本文提出了生长曲线模型回归系数阵B的一类有偏估计──多元广义压缩LSE类.以改善设计阵呈病态时的LSE,讨论了它的可容许性,优效性以及在均方误差意义和Pitman接近原则下,改善LSE的条件,另外还讨论了它的相合性、最优性,Bayes性等优良性。
In this paper, multivariate general compression LS estimate B_GS (W1,W2 )of theregression cofficient B is considered when the design matrix present ill-condition in growthcurne moelel. And the admissibility is discussed, We show the regions preferable to LSE undermean square error and pitman's clossness repectively and also discuss the ather quality of B_GS(W1, W2), forexample consistency, Bayes quality and so on.
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
1997年第2期15-23,共9页
Journal of East China Normal University(Natural Science)
关键词
多元分析
生长曲线模型
有偏估计
最小二乘估计
Multivariate general compression LSE Mean square error Pitman'sclossness