摘要
讨论了非线性中立型抛物偏泛函微分方程系统t〔ui(x,t)-P(t)ui(x,t-σ(t))〕+Ai(x,t)ui(x,t)+mj=1Bij(x,t)fij(uj(x,t-τ))=Ci(t)Δui(x,t)+mj=1Dij(t)Δui(x,t-rj),i=1,2,…,m,(x,t)∈Ω×(0,∞)≡G,其中ΩRn是具有逐片光滑边界的有界区域,Δui(x,t)=nh=12x2hui(x,t),i=1,2,…,m.
The oscillation of solutions for systems of nonlinear neutral parabolic partial functional differential equation of the formtu i(x,t)-P(t)u i(x,t-σ(t))+A i( x,t )u i(x,t)+mj=1B ij (x,t)f ij (u j(x,t-τ))=C i(t) Δ u i(x,t)+mj=1D ij (t) Δ u i(x,t-r j),i=1,2,…,m,(x,t)∈Ω×(0,∞)≡Gis discussed,where Ω is a bounded domain in R n with piece wise smooth boundary,Δu i(x,t)=nh=1 2x 2 hu i(x,t),i=1,2,…,m.Sufficient conditions are obtained for oscillation of solutions of systems.
出处
《烟台师范学院学报(自然科学版)》
1997年第2期90-95,共6页
Yantai Teachers University journal(Natural Science Edition)
基金
黑龙江省自然科学基金
齐齐哈尔市青年科技计划项目基金
关键词
抛物型
偏微分方程
中立型
边值问题
H-Y定理
parabolic partial differential equation,nonlinear neutral type,boundary va lue problem,oscillation,Hunt Yorkes theorem