摘要
讨论了一类具有随机通信时延的网络控制系统的建模及稳定性分析,其中网络诱导时延受控于一概率分布未知的马尔可夫链,其概率分布可通过Baum-Welch算法计算。基于隐马尔可夫模型理论,将采用状态反馈的闭环网络控制系统建模成跳变线性系统,给出了这类网络控制系统随机稳定的充分条件,并将状态反馈控制器的求解问题转化为线性矩阵不等式的解的问题。最后,通过一个仿真算例说明了上述判定系统稳定性条件的有效性。
The modeling and stability analysis for a kind of networked control systems (NCSs) with random communication delays are discussed. The network-induced delays are considered to be governed by an underlying Markov chain with unknown probability distribution, which can be calculated by using Baum-Welch algorithm. Based on hidden Markov model (HMM) theory, the resulting closed-loop systems are jump linear systems, and the sufficient conditions on the existence of the stabilizing controller are established by solving a set of linear matrix inequalities (LMIs). Finally, a numerical example is given to show the efficiency and feasibility of our proposed approach.
出处
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2008年第2期273-278,共6页
Chinese Journal of Scientific Instrument
基金
Supported by Anhui International Cooperation Project (05088025)
the Natural Science Foundation of Anhui Provincial EducationDepartment (KJ2007A047)
关键词
网络控制系统
时延
隐马尔可夫模型
随机稳定性
networked control system
time delay
hidden Markov model
stochastic stability