期刊文献+

复杂形状碳化硅陶瓷构件制备新工艺研究 被引量:2

Study on Novel Procedure for Complex-shaped SiC Ceramic Components
下载PDF
导出
摘要 用光固化快速成形技术制作复杂构件的负模,以酚醛树脂和淀粉的混合物填充负模,固化后在800℃高温下热解制成构件的碳支架,碳支架在真空炉中渗硅生成含有SiC/C/Si的陶瓷复合材料构件。统计分析了构件的收缩变形;用SEM及光学显微镜分析了制件的微观结构;研究了渗硅温度对材料抗弯强度的影响。结果表明:制件在各个方向的尺寸收缩率一致,大约为17%;碳支架含有由微孔和孔道组成的孔系,显气孔率越高,越利于渗硅反应;制件的抗弯强度随渗硅温度的升高而降低。应用该工艺制作了叶轮和叶片样件,所获制件形状和表面质量良好。 A negative mold for complex-shaped component was fabricated by stereolithography technology, and then the mold was filled with mixture of phenolic resin and starch. After solidified, the sample was pyrolyzed at 800℃ to be a carbon template that was transformed to be SiC component by reactive infiltration of Si. The sample shrinking and distortion was analyzed through statistical comparison. The microstructures of the ceramic components and carbon template were observed with scanning electron microscope and optic microscope. The effect of the reactive temperature on three point bending strength was also studied. The results show that the shrinkage of the sample at all dimensional directional is the same and it is about 17%. Small pores and channels form the pores system in the carbon template. The higher the open porosity of the carbon template, the better the reactive infiltration of Si. The bending strength of the sample decreases with the increase of reactive temperature. Finally, a vane sample and a impeller sample were fabricated using this procedure, the shape and the surface final quality of the sample are sufficient.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2008年第2期236-238,共3页 China Mechanical Engineering
基金 国家自然科学基金资助项目(50475082)
关键词 陶瓷 酚醛树脂 快速成形 反应烧结 模具 ceramic phenolic resin rapid prototype reactive sintering mold
  • 相关文献

参考文献6

二级参考文献3

  • 1汪树军.树脂裂解碳作为锂离子电池碳负极材料的研究[M].北京:北京科技大学,1995..
  • 2汪树军,学位论文,1995年
  • 3Hong Zhou,J Am Ceram Soc,1995年,78卷,9期,2456页

共引文献69

同被引文献29

  • 1杨睿,贾振元,郭东明.理想材料零件材料信息表述及处理的研究[J].中国机械工程,2006,17(2):164-167. 被引量:3
  • 2颜永年,刘海霞,李生杰,熊卓,王小红.生物制造工程的发展和趋势[J].中国科学基金,2007,21(2):65-68. 被引量:11
  • 3Kumar V, Dutta D. An approach to modeling heterogeneous objects [J]. ASME Journal of Mechanical Design, 1998, 120 (4) : 659 - 667.
  • 4Alexander P, Valery A, Peter C. Heterogeneous objects modeling and applications [ M ]. Berlin Heidelberg: Springer-Verlag, 2008.
  • 5Kou X Y, Tan S T, Sze W S. Modeling complex heteroge- neous objects with non-manifold heterogeneous cells [ J ]. Computer-Aided Design, 2006, 38:457 -474.
  • 6Jianfeng Wang, James K C, Mike F N, et al. A new structur- al model of effective thermal conductivity for heterogeneous materials with co-continuous phases [ J ]. International Journal of Heat and Mass Transfer, 2008, 51:2389-2397.
  • 7Patil L, Dutta D, Bhatt AD, et al. A proposed standard- based approach for representing heterogeneous objects for layered manufacturing [ J ]. Rapid Prototyping Journal, 2002, 8(3) :134 - 146.
  • 8Biswas A, Shapiro V, Tsukanov I. Heterogeneous material modeling with distance fields [ J ]. Computer Aided Geo- metric Design, 2004, 21 (3) :215 -242.
  • 9Zhou Hongmei, Liu Zhigang, Lu Bingheng. Heterogeneousobject modeling based on multi-color distance field [ J ]. Materials and Design, 2009,30:939 - 946.
  • 10Hu Y, Blouin V, Fadel G M. Design for manufacturing of 3D heterogeneous objects with processing time considera- tions [ J ]. ASME Journal of Mechanical Design, 2008, 130(3) : 1 -9.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部