期刊文献+

一种基于图像特征点的图像匹配算法 被引量:19

Image registration on image feature
下载PDF
导出
摘要 图像匹配技术被广泛用于人脸识别、全景图像生成等领域。该文利用变比不变特征点(Scale Invariance FeatureTransform-SIFT)提取方法提取特征点,并对SIFT方法提取出的特征点用最近邻算法(Nearest Neighbor-NN)进行匹配,在搜索最近邻特征点和次近邻特征点时使用了在K-D树搜索算法基础上进行改进的搜索算法BBF(Best Bin First)算法。实验证明该匹配算法具有匹配精度高,鲁棒性好的特点。 Image matching technology has been widely used for face recognition, building panorama. This paper uses SIFT (Scale Invariance Feature Transform) as feature extraction method. After that, the paper uses NN (Nearest Neighbor) for feature matching. In the period of searching nearest and second nearest feature point, the paper uses BBF (Best Bin First) as searching method which is modified from K-D tree searching method. This experiment proved that it is of high accuracy and robustness.
出处 《国外电子测量技术》 2008年第1期3-4,15,共3页 Foreign Electronic Measurement Technology
基金 许昌学院青年资金项目
关键词 图像 特征点 匹配 最近邻算法 image feature registration nearest neighbor
  • 相关文献

参考文献6

  • 1胡明昊,任明武,杨静宇.一种快速实用的特征点匹配算法[J].计算机工程,2004,30(9):31-33. 被引量:32
  • 2赵向阳,杜利民.一种全自动稳健的图像拼接融合算法[J].中国图象图形学报(A辑),2004,9(4):417-422. 被引量:131
  • 3LOWED G. Distinctive image features from scale-invariant key points[C]. International Journal of Computer Vision, 2004, 60(2) : 91-110.
  • 4LOWED G. Object recognition from local scale-invariant features[C]. International Conference on Computer Vision. Corfu, Greece, 1999: 1150-1157.
  • 5MIKOLAJCZYK K, SCHMID C. A performance evaluation of local descriptors [C]. International Conference on Computer Vision & Pattern Recongnition, 2003:275-263.
  • 6BEIS J S, LOWED G. Shape indexing using approximate nearest-neighbour search in high-dimensional spaces[C]. Proceedings of the IEEE 1997 Computer Society Conference on Computer Vision and Pattern Recognition, 1997: 1000-1006.

二级参考文献10

  • 1Richard Szetiski. Video mosaics for virtual environments [J].IEEE Computer Graphics and Applications, 1996,16 (2):22-33.
  • 2Pallefeys M. Self-Calibration and Metric 3D Reconstruction from Uncalibrated Image Sequences [D]. Belgium: K. U,Leuven,1998.
  • 3Peter J Burg, Edward H Adelson. A multiresolution spline withapplication to image mosaics [J]. ACM Transactions on Graphics, 1988,7.(4) 1217-236.
  • 4Richard Hartley, Andrew Zisserman. Multiple View Geometry in Computer Vision[M]. Cambridge: The Press Syndicate of The University of Cambridge,UK,2000.
  • 5Fisehler M A, Bolles R C. Random sample consensus: a paradigm for model fitting with application to image analysis and automated cartography [ J ]. Communication Association Machine, 1981,24(6) :381-395.
  • 6Press W H, Teukolsky S A, Vetterling W T, et al. Nuericla Recipes in C[M]. Cambridge: Cambridge University Press, UK,1992:681-688.
  • 7Richard Szeliski, Heuttg-Yeung Shum. Creating full view pactoramic image mosaics and texture-mapped models [J].SIGGRAPH 97 Conference Proceedings, 1997.3(1):251-258.
  • 8Shi J, Tomasi C. Good Feature to Track. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1994:593-600
  • 9Beymer D, McLauch P. A Real-time Computer Vision System for Measuring Tracffic Parameters IEEE, 1997
  • 10王栓,艾海舟,何克忠.基于差分图象的多运动目标的检测与跟踪[J].中国图象图形学报(A辑),1999,4(6):470-475. 被引量:90

共引文献159

同被引文献165

引证文献19

二级引证文献125

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部